Bryan Berns

CS 577 

Homework 3
Problem 1 (Exercise 4, Page 102)


a.


[image: image1.wmf](

)

0

1

1

1

...

a

x

a

x

a

x

a

x

p

n

n

n

n

+

+

+

+

=

-

-




value = 0;
for m = n to 0


value = value + a(m)*x^m

end


Its worst case analysis is as follows:



[image: image2.wmf](

)

(

)

2

0

 

:

gives

which 

2

1

0

1

....

)

3

(

)

2

(

)

1

(

n

n

n

m

H

n

n

n

n

n

m

Q

+

=

=

+

+

+

-

+

-

+

-

+

å

=


We only should have to use one multiplicative operation for any term given that high order terms are simply combinations of lower over ones which we’ve already figured out.  For example:

[image: image3.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

2n

 

:

2

2

2

2

2

3

5

2

2

4

2

3

2

0

1

2

2

3

3

4

4

»

Þ

=

Þ

=

Þ

=

Þ

+

+

+

+

=

Total

x

x

x

x

x

x

x

x

x

x

a

x

a

x

a

x

a

x

a

x

p


We can evaluate any exponent value of x as with two multiplications of previous known values making this linearly efficient.
c.

There will always be a specific dependence on the constant per each exponential term.  Unless these constants take some form, linear efficiency is the best possible (since there is a linear dependence on the variables).
Problem 2 (Exercise 10, Page 119)

a.  


The sum of the entire square is:




[image: image4.wmf](

)

2

1

2

2

1

2

+

=

å

=

n

n

m

n

m


Given that each row (or column) has the magic constant and all three of n rows encompasses all squares each once, we can simply divide this values by ‘n’ to obtain the value per row.


[image: image5.wmf](

)

(

)

2

1

2

1

2

2

2

+

=

÷

÷

ø

ö

ç

ç

è

æ

+

=

n

n

n

n

n

Value


b.


// BRUTE FORCE EXHAUSTIVE METHOD



list taken = []



square[n][n] = [][]

begin takesquare(taken, square)


if taken is empty



for each item not in taken




square_tmp = square[][];



take next available item in square



add number to taken list;




takesquare(taken, square_tmp)


else 



if square is magic display, magic square



else do nothing



end takesquare

c.


From MathWorld.Com:

Kraitchik (1942) gives general techniques of constructing even and odd squares of order n. For n odd, a very straightforward technique known as the Siamese method can be used.  It begins by placing a 1 in any location (in the center square of the top row in the above example), then incrementally placing subsequent numbers in the square one unit above and to the right. The counting is wrapped around, so that falling off the top returns on the bottom and falling off the right returns on the left. When a square is encountered which is already filled, the next number is instead placed below the previous one and the method continues as before. The method, also called de la Loubere's method, is purported to have been first reported in the West when de la Loubere returned to France after serving as ambassador to Siam.

An elegant method for constructing magic squares of doubly even order [image: image6.png]n=4m



is to draw xs through each [image: image7.png]4x4



sub square and fill all squares in sequence. Then replace each entry [image: image8.png]


on a crossed-off diagonal by [image: image9.png](n*+

1) -

aij
i



or, equivalently, reverse the order of the crossed-out entries. Thus in the above example for n = 8, the crossed-out numbers are originally 1, 4, ..., 61, 64, so entry 1 is replaced with 64, 4 with 61, etc.

A very elegant method for constructing magic squares of singly even order [image: image10.png]n=4m+2



with [image: image11.png]m=1



(there is no magic square of order 2) is due to J. H. Conway, who calls it the "LUX" method. Create an array consisting of [image: image12.png]m+1



rows of Ls, 1 row of Us, and [image: image13.png]


rows of Xs, all of length [image: image14.png]n/2=2m+1



. Interchange the middle U with the L above it. Now generate the magic square of order [image: image15.png]2m+1



using the Siamese method centered on the array of letters (starting in the center square of the top row), but fill each set of four squares surrounding a letter sequentially according to the order prescribed by the letter. That order is illustrated on the left side of the above figure, and the completed square is illustrated to the right. The "shapes" of the letters L, U, and X naturally suggest the filling order, hence the name of the algorithm.

_1138424056.unknown

_1138424646.unknown

_1138362234.unknown

_1138423078.unknown

_1138361983.unknown

