Bryan Berns

CS 577

Homework 4
Problem 1 (Exercise 2, Page 118)

Exhaustive search outline for Hamilton circuit:
a) Label every vertex.

b) Pick a starting point.

c) Pick a path to a node that hasn’t been visited (or if all paths lead to a visited vertex, pick a different path from previous node).

d) Repeat c) until all vertexes are used

The pseudo code implementation of this is generally simple:

current = random vertex in circuit

list = list of all vertexes with current removed

Hamilton(current,list wit) {

If List Is Empty, Solution Is Found!

For each vertex entry in list {
If a path exists from current vertex to vertex entry

Hamilton(entry,list with entry removed);

Else next vertex

}

}
Problem 2 (Exercise 5, Page 118)

If we consider the simplest non-trivial solution of 2 persons with two jobs:

[image: image1.wmf]ú

û

ù

ê

ë

é

=

3

1

5

2

ij

C

We only have two scenarios then:

[image: image2.wmf]6

1

5

1

,

2

5

3

2

2

,

1

=

+

>

<

=

+

>

<

The optimal solution gives is five. As we see, this solution does not include ‘1’, the smallest element of the matrix.
Problem 3 (Exercise 10, Page 127)
This problem becomes simple if we examine the problem from a multiply-and-solve point of view. We consider the simplest scenarios with a non-trivial situation:

For these four by four solutions, note the gray (defective) square can move anywhere in it’s 2 by 2 square and the remainder of the solution is unaltered. Also note that we can we manipulate these four arrangements to obtain any of the other 12 possible locations for the defective square and a solution involves the three conjoint squares around the center (the black triomino). Now we can use rotated versions of the leftmost square to setup the 8 x 8 scenario:
The three ‘defective’ squares are used to give us everything we need to place any of the sixteen possible 4 x 4 scenarios with the real defective square in to the missing location.

This method can we used to solve any larger puzzle by pretending there’s a defective square at the to-be-center connector of any subsets.

Working this in reverse:

Triomino(Square)

If Square is 1 x 1 or 0 x 0

- You are an idiot

If Square is 2 x 2

- Place a triomino in the only available location

Else

- Divide any subset into four parts.

- For the three parts that do not contain a defective square, place a triomino in the only location that would join them all.

- Triomino(EachPart)
_1138986359.unknown

_1138986420.unknown

