Bryan Berns

CS 577

Homework 7
I have not been able to make it to discussions on ‘proving’ correctness so I’m going to try to explain correctness through words. Please leave any comments on how I can transform these answers to be whatever it may be you actually want for a proof.

Problem 1 (Exercise 7, Page 198)

a.

BillAccounter(BillList,CheckList) {

SortListByOwner(BillList)

SortListByOwner(CheckList)

CheckNumber = 1;

BillNumber = 1;

While BillNumber <= TotalBills
{

If BillOwner(BillNumber) < CheckOwner(CheckNumber) {

ReportNotPaid(BillOwner(BillNumber))
BillNumber++

} Else {

CheckNumber++
}

}

}

Complexity:

Given we use some sort with complexity O(N*LOG(N))
B = NumberOfBills

C = NumberOfChecks

O(C*LOG(C)) + O(B*LOG(B)) + O(C) + O(B) =~ O(B*LOG(B))

Correctness:

All check numbers are inherently contained in bill numbers. Therefore, once sorted, we can iterate through the bill list and if we find that our bill list contains a value not currently pointed to in the check list, then that bill has not been paid.
b.

StateCounter(RecordList) {

RecordNumber = 1;

StateNumber[50] = {0}
While RecordNumber <= TotalRecords
{

State = GetStateNumber(GetState(RecordNumber)

StateNumber[State]++

}

Return StateNumber

}

Complexity:
We don’t sort, just iterate through list once so O(N)

Correctness:

Every record is uniquely iterated through and counted, thus summing all values.
Problem 2 (Exercise 8, Page 198)

a.
The problem will always have a solution unless ALL points are co-linear.
No, the solution is not always unique. The algorithm in part b will have a different solution if you choose a different starting point.

b.

MakePolygon(PointList) {

BasePoint = SelectRandomPoint(PointList)

FirstPoint = SelectRandomPoint(PointList)

BaseLine = CreateLine(Base,Point)

LineList = {}

For Each Point In PointList {

Line = CreateLine(BasePoint,Point)

LineList.Add(Line)

}

SortListByReferenceAngle(LineList,BaseLine) // Clockwise, 0 to 360 degrees
PreviousLine = BaseLine
For Each Line In LineList { // Sorted From Lowest To Highest

PointOne = GetClosestPointOnLine(PreviousLine);

PointTwo = GetFarthestPointOnLine(Line);

PointTst = GetClosestPointOnLine(Line)

If (PointTwo != PointTst) ConnectPoints(PointTst,PointTwo)

ConnectPoins(PointOne,PointTwo);

PreviousLine = Line

}
ConnectPoints(LastReference,BasePoint)

}

Complexity:

Given some sort method is O(N*LOG(N))

P = NumberOfPoints

O(P) + O(P*LOG(P)) =~ O(P*LOG(P))

Correctness:

We model the problem such that we choose a point to be a circle’s center then we will divide the circle into pieces by drawing lines from the center point to all others. The algorithm will make a line from the points between these edges. Since only one line is drawn in this area, we are guaranteed the lines will not overlap.
If the ‘rays’ from the center point cross multiple points, the multiple points can be joined to unit all those co-linear points. In this case, the edge uniting this ray to the next ray clockwise is the closest point on this ray to the farthest point on the neighboring ray. This reverses for counter-clockwise values. Since me connect a point on every loop and never have the possibility of intersecting lines, this method is guaranteed to arrive at a result.
Problem 3 (Exercise 9, Page 198)
HasNumbersToSum(NumberList,Value) {

SortList(NumberList)

While(TRUE) {

If IsEmpty(NumberList) Return FALSE

Sum = FirstNumber(NumberList) + LastNumber(NumberList)

If (Sum = Value) Return TRUE

If (Sum > Value) RemoveLastNumber(NumberList)

Else RemoveFirstValue(NumberList)

}

}

Complexity:

Given some sort method is O(N*LOG(N))

P = NumberOfPoints

2*O(P) + O(P*LOG(P)) =~ O(P*LOG(P))

Correctness:

Once sorting the values, we can make two obvious observations:

If the sum of the first and last number is greater than our test value, then obviously the last number cannot be part of the solution since the sum of it and ALL others numbers will also be greater than our test value.

If the sum of the first and last number is less than our test value, then obviously the first number cannot be part of the solution since the sum of it and ALL other number will also be less than our test value.

Since we remove one value on each loop, we are guaranteed that we will either run out of values to test (in which case we return false) or we find the values

