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C.
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Since at all values of k < 2, the function remains zero (the flip of u[k-2] does not pass u[k] until k=2):
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For k > 2, the function will assume an opposite value when flipped (unit function are 1):
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IN SUMMARY: 
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H.

[image: image5.wmf][

]

[

]

[

]

[

]

[

]

k

u

k

n

u

k

u

k

n

u

n

y

k

k

n

k

k

k

n

a

b

a

b

×

-

®

-

=

-

¥

-¥

=

-

å

*


Since both values are based at 0, no values of convolution will occur before 0:
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For all values greater than 0, the input and system are exponential decreasing from beta and alpha:
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(THE ABOVE SUMMATION IS NOT TRUE IF A=B, IN WHICH CASE WE JUST HAVE A SUMMATION OVER 1)

IN SUMMARY: 
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2.3)

(Since for the respective crossover period, we have left out the multiplicative step of multiplying crossed values by the ‘1’ value)

Must picture x[n] flipped and traversed through f[n]. Our bounds of result are -8 (-4 + -4) and 4:
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At this point the left edge of x[n] will move beyond the left edge of f[n]:
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At this point, the right edge x[n] moves out of f[n]:
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2.4)
C.   
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By throwing in some values into the sum, we see that the x(t) is a composite sum of Dirac delta functions of alternating every 2 with magnitude -1 / 1.  Luckily since the span of this is two and the span of h(t) is two, the resultant delta convolution will simply be a repeating, inversing pattern.  Moreover, integrating over this pattern will just give us our original function. (It turns out, that a convolution with a delta function giving us the original function is a general rule):
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After summing these values, and inverting as a series:
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2.5)

B. 
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Since at all values of 
[image: image16.wmf]t

 < -2, the function remains zero (the product of any value and u(t-
[image: image17.wmf]t

+2) is 0 until -2):
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After passing -2, the right flipped right edge of the input will begin to overlap.  u[t-
[image: image19.wmf]t

-2] maintains value 1 for this period:
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IN SUMMARY: 
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F. 
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In this example, the unit step functions on the left cause a subsection of 
[image: image23.wmf]2
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 to be convoluted over the unit step of magnitude 2. By simple analysis, it is easy to see that the product of their crossing results in zero output until 
[image: image24.wmf]t

 > -3:
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The next interval occurs as the subsection passes into the unit function as 
[image: image26.wmf]t

 > -3.  At this point 2u[t-
[image: image27.wmf]t

+2] simply becomes 2 and the integral is only being evaluated at values where the unit functions u[
[image: image28.wmf]t

+1] and u[
[image: image29.wmf]t

-1] are 1, thus:
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This value holds true until the function is fully inside the other at 
[image: image31.wmf]t

 > -1.  Then the value remains constant for all time:
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IN SUMMARY: 
[image: image33.wmf][
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2.6)

B. 
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Linear analysis is all we need for this problem, since the integral under a constant increases linearly.  Assuming we flip x(t), we traverse z(t) from left to right.  At t=-3, when the right edge of x(t) reaches z(t), the convolution integral will increase from 0.  When the function is completing enclosed in the negative section (t=-1) of z(t), it will attain it’s most negative value of (-2)(1)(1)=-2.  The function will then proceed to move to the positive part of z(t), reaching it’s highest positive value when completely enclosed in z(t) at t=1.  The function will then move out of z(t) and lose it’s positive value until it zeroes at t=3
Using that explanation:
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2.7)


B. 
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Using the definition of convolution sum, we were able to do this.





Since g[n-k2] is not dependant on the k1 summation, we can move it inside and since k1 summation and x[k1] are not dependant on the k2 summation we can move it fully outside.








By letting z=k2-k1 we can see that this is the equivalent associative piece of the equation.
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