Overall Comments & Design Theory

We approached this circuit with the assumption that:

SPEED = GOOD

Of course, this sometimes means thing get expensive, but speed is where it’s at. To optimize speed (as well as cost), we used optimized logic:

AND – OR
=
NAND – NAND

AND 4+
=
NAND – NOR

OR 4+

=
NOR – NAND

Tri-state buffers were used where branched multiplexers could have been. This greatly increased cost, but also increased speed.
YES, OUR DESIGN IS AS

FAST AS WE SAY IT IS (
(Since I’ve Seen Other Groups That Have Horribly High Delays)

And if anyone has a faster design then us they need to learn how to count delays… just kidding.
Testing
For reasons of saving space only ‘reactive’ inputs were used for testing, meaning inputs that would most likely cause problems or prove that general operations would work.

The ALU was naturally tested more than shown, but only these ‘reactive’ tests were included due to space limitation of this report.
ALU Design & Analysis
Instruction Decode:

The instruction decode for this circuit is module-less and very proprietary for our circuit given only 8 possible instructions. For a larger implementation, this would probably have to be modulated.

Adder:

The adder uses a parallel prefix carry look ahead module. Although this particular version has high fan-out, it is very fast and cost-effective.

Subtractor:

I would like to make a note that many sites that contain information about PP – modules incorrectly putting a ‘Carry In’ line incorrectly on the module. I’ve actually emailed professors at Berkley letting them know of there mistake in lecture notes. You CANNOT do this since some outputs are not in realization of it. Thus, an operation such as CarryIn + 1 + 2 = 0. We need the CarryIn to simulate a conversion of the second operand to two’s complement, so another level on the PP – module had to be added. Subtraction then was simply carried out by inverting the bits of the second operand.
Shifter:

The shifter was constructed using 16 2(1 multiplexers. If it were a variable shift, larger multiplexers could be used (or even tri-state buffers). For the most significant, a 4(1 multiplexers chooses the correct bit per the opcode.

Bitwise AND / XOR:
Since the Partial Full Adder used in the Adder computes a bitwise XOR and AND, those were used to save gates. There is a trick to the implementation here (the XOR opcode decode will set the 2nd operand to invert mode so we must invert the XOR to correct this).
Status Bits:

Status bits were not easy to decide and there implementation could probably be made more concise if we knew what exactly the bits would have to be used for.

ZERO: Is set to zero if OUT(15:0) is equal to zero. EVEN IF the carry bit is set to one.
OVERFLOW: Is set to 1 for 4 possible occurrences of addition and subtraction. We shouldn’t care about overflow for non-addition operations so we treated non-add/sub operations as “‘don’t-cares”.

CARRY: Is set to 1 when the ALU is carry’s a bit.
Negative: Is set to one when the OUT(15) bit is equal to 1.

Summary Of Delays, Costs:

Longest Delay (Caused Subtraction -> Set Zero):

Tri-State Select: 3 ns

PFA Stage: 3 ns

Carry LookAhead: 20 ns

Output Computation: 3 ns

Set Zero Bit: 8 ns

Total Max Delay: 37 ns

Costs:

PP Carry Look Ahead: 432

Custom Shifter: 46

PFA: 18 x 16

Tri-states: 4 x 16 x 6

Inverter: 2 x 32

Other Gates: 102
Sum: 1332
16 x 16-bit Register File Design

4-to-16 Decoder:

We built a custom 4-16 decoder unit to decrease the delay. Using a combination of 3-to-8 and 1-to-2 decoders would result in a delay of 10 ns. The delay for the custom 4-to-16 decoder is only 5ns, 6ns in the case of the decoder with a special select.
Tri-State Buffers:

Because there are 16 registers in the file, with 2 being read at a time, tri-state buffers seemed to be the most logical course of action. By connecting them to the 4-to-16 decoder, each output bus has only 1 register supplying its value. This is infinitely easier than using multiplexers for the output selection. It would require a 16-bit wide 16-to-1 multiplexer to accomplish the same task as the tri-state buffers.
Tristate Buffers were also placed for fast redirection for input. If the register write selector is off, then on a clock cycle, the value contained in the register is recycle. If it’s on, it absorbs the value in DATA(15:0).
Un-Gated Clock:
One reason the design is costly is because the clock is preferable not to be gated since then there would be clock-propagation delay and clock skew, both of which cause a processor to be hard to control and inefficient.

Summary of Delays, Costs:

Longest Delay:

Writing Total: 9 ns:

Select (6 ns)

Buffer for Safety (1 ns)

Tristate (2 ns)

Reading Total: 7ns

Select (5 ns)

Tristate Select (2 ns)

Costs:

4-to-16 Decoder: 200 x 2

Enable Decoder: 232

16x16-bit Register: 1536

Tri-State Buffers: 4096

Inverters: 16 x 2

Sum: 6296

