Bryan Berns
ECE 552 – Homework 2

1)
	1
	2
	3
	4
	5

	
[image: image1.wmf]1

I

	35
	
[image: image2.wmf]1

I

	35
	
[image: image3.wmf]1

I

	35
	
[image: image4.wmf]1

I

	35
	
[image: image5.wmf]1

I

 EMBED Equation.DSMT4 [image: image6.wmf]2

I

	55

	
[image: image7.wmf]2

I

	30
	
[image: image8.wmf]2

I

	30
	
[image: image9.wmf]2

I

	30
	
[image: image10.wmf]3

I

 EMBED Equation.DSMT4 [image: image11.wmf]4

I

 EMBED Equation.DSMT4 [image: image12.wmf]5

I

 EMBED Equation.DSMT4 [image: image13.wmf]6

I

	35
	
[image: image14.wmf]3

I

 EMBED Equation.DSMT4 [image: image15.wmf]4

I

 EMBED Equation.DSMT4 [image: image16.wmf]5

I

 EMBED Equation.DSMT4 [image: image17.wmf]6

I

	35

	
[image: image18.wmf]3

I

	15
	
[image: image19.wmf]3

I

	15
	
[image: image20.wmf]4

I

 EMBED Equation.DSMT4 [image: image21.wmf]5

I

 EMBED Equation.DSMT4 [image: image22.wmf]6

I

	20
	
[image: image23.wmf]2

I

	20
	
	

	
[image: image24.wmf]4

I

	8
	
[image: image25.wmf]5

I

 EMBED Equation.DSMT4 [image: image26.wmf]6

I

	12
	
[image: image27.wmf]3

I

	15
	
	
	
	

	
[image: image28.wmf]5

I

	6
	
[image: image29.wmf]4

I

	8
	
	
	
	
	
	

	
[image: image30.wmf]6

I

	6
	
	
	
	
	
	
	
	

[image: image40.wmf]1

I

	Instruction
	Length

	
[image: image31.wmf]1

I

	35%
	2
	.7

	
[image: image32.wmf]2

I

	30%
	2
	.6

	
[image: image33.wmf]3

I

	15%
	2
	.3

	
[image: image34.wmf]4

I

	8%
	3
	.24

	
[image: image35.wmf]5

I

	6%
	4
	.24

	
[image: image36.wmf]6

I

	6%
	4
	.24

The average length (right-most column added) would therefore be 2.32 bits per instruction. The none encoded average, obviously, would be 3.00.
2)

li $t5, small:

addi $t5, $zero, small

lw $t5, big($t3):

lui $t5, upper_half(big)
addiu $t5, $t5, lower_half(big)
add $t5, $t3, $t5

lw $t5, 0($t5)

bge $t5, $t3, L:

slt $t7, $t3, $t5

bne $t7, $zero, L

3)
As given in the description of the problem, we cannot ‘reduce memory traffic’ so I will assume that I have to essentially process each command as if it were separate from the others:
Memory – Memory:

add a, b, c

1, opcode
2 x 3, address
4 x 3 data trans

* Occurs Three Times
Code Bytes: 21

Data Bytes: 36

Stack:

push c

1, opcode
2, address

4 data trans

push b

1, opcode
2, address

4 data trans

add

1, opcode
0, address

0 data trans

pop a

1, opcode
2, address

4 data trans

* Occurs Three Times
Code Bytes: 30

Data Bytes: 36

Load / Store Stack:

lw $t1, c

1, opcode
1, register & 2, address

4 data trans

lw $t2, b

1, opcode
1, register & 2, address

4 data trans

add $t3, $t2, $t1
1, opcode
3, register & 0, address

0 data trans

sw $t3, 0(a)

1, opcode
1, register & 2, address

4 data trans

* Occurs Three Times
Code Bytes: 48

Data Bytes: 36
4)

[image: image37.wmf]-11

-2-3-40

-2-3-40

-1-1-1-1-1-1

-1-1

If and are both positive then, 1. Let

1 where ...

1 where ...

The carry out of the msb is always one s

ince

1

nn

nnn

nnn

nnnnnnn

nnn

XYxy

Xxxxxxx

Yyyyyyy

cxyxcyc

cxcy

-

==

==

==

=++

=++

-1-1

1

1

1

1

1

1

1

0

2

2

overflow (by property)

1

2

2

no overflow (by property)

nn

n

n

n

n

n

n

n

c

c

c

xy

XY

c

xy

XY

-

-

-

-

-

-

=

=

Þ+<-

Þ+>

Þ

=

Þ+³-

Þ+£

Þ

5)

[image: image38.wmf]0

1000

2110100

32212102100

332321321032100

4 adder has 4 terms ORed and 5 terms AND

ed involved

From the format:

C

C

C

in

out

bit

C

GPC

GPGPPC

CGPGPPGPPPC

CGPGPPGPPPGPPPPC

-

=

=+

=++

=+++

=++++

144444444424444444443

This linearly increases until 32, so there will be 32 terms ORed and 33 terms ANDed.

For every 4 ANDed terms, another gate will have to be implement since our max is 4.

For every 4 of those gates, yet another will have to be implemented. This is logarithmic.

[image: image39.wmf][

]

4

4

4

log(#)

_[log33]3

_[log32]3

_&1

_1

_8

DelayCeilingGATES

DelayANDSCeiling

DelayORSCeiling

DelayPG

DelaySUM

TotalDelay

=

==

==

=

=

=

6) Summary of All Pages:

16-Bit Ripple Carry

Total Cost: 480

Calculated Delay: 90 ns (11,111,1111 additions / second)
QuickSim Measured Delay: 78 ns (12,820,512 additions / second)
32-Bit Version: 160 ns

64-Bit Version: 320 ns

Linear Delay Equation: Delay = 5 ns times # bits

16-Bit Carry Look Ahead

Total Cost: 923

(We could eliminate about 50 if we consider the back we don’t need generate and propagate for the binding for the outside CLU)

Calculated Delay: 32 ns (31,250,000 additions / second)
QuickSim Measured Delay: 31 ns (32,258,064 additions / second)
32-Bit Version: 47 ns

64-Bit Version: 49 ns

Logarithmic Delay: Approximately Constant Times Log_Base_4(BITS)

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���� EMBED Equation.DSMT4 ���

0

10

10

11

00

01

110

111

1100

1101

[image: image41.wmf]2

I

[image: image42.wmf]3

I

[image: image43.wmf]4

I

[image: image44.wmf]5

I

[image: image45.wmf]6

I

[image: image46.wmf]1

I

[image: image47.wmf]2

I

[image: image48.wmf]1

I

[image: image49.wmf]3

I

[image: image50.wmf]4

I

[image: image51.wmf]4

I

[image: image52.wmf]5

I

[image: image53.wmf]6

I

[image: image54.wmf]2

I

[image: image55.wmf]3

I

[image: image56.wmf]4

I

[image: image57.wmf]3

I

[image: image58.wmf]3

I

[image: image59.wmf]4

I

[image: image60.wmf]2

I

[image: image61.wmf]3

I

[image: image62.wmf]4

I

[image: image63.wmf]4

I

[image: image64.wmf]3

I

[image: image65.wmf]4

I

[image: image66.wmf]5

I

[image: image67.wmf]6

I

[image: image68.wmf]1

I

[image: image69.wmf]3

I

[image: image70.wmf]4

I

[image: image71.wmf]6

I

[image: image72.wmf]3

I

[image: image73.wmf]4

I

[image: image74.wmf]5

I

[image: image75.wmf]3

I

[image: image76.wmf]4

I

_1107431419.unknown

_1107432520.unknown

_1107614873.unknown

_1107617654.unknown

_1107629226.unknown

_1107432475.unknown

_1107431415.unknown

_1107431387.unknown

_1107431393.unknown

_1107431409.unknown

_1107431323.unknown

