Bryan Berns
ECE 552 – Homework 2
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The average length (right-most column added)     would therefore be 2.32 bits per instruction.  The none encoded average, obviously, would be 3.00.
2)

li $t5, small:

addi $t5, $zero, small

lw $t5, big($t3):

lui $t5, upper_half(big)
addiu $t5, $t5, lower_half(big)
add $t5, $t3, $t5

lw $t5, 0($t5)


bge $t5, $t3, L:

slt $t7, $t3, $t5


bne $t7, $zero, L

3)
As given in the description of the problem, we cannot ‘reduce memory traffic’ so I will assume that I have to essentially process each command as if it were separate from the others:
Memory – Memory:



add a, b, c

1, opcode
2 x 3, address 
4 x 3 data trans



* Occurs Three Times
Code Bytes: 21

Data Bytes: 36


Stack:



push c


1, opcode
2, address 

4 data trans



push b

1, opcode
2, address

4 data trans




add


1, opcode
0, address

0 data trans



pop a


1, opcode
2, address

4 data trans



* Occurs Three Times
Code Bytes: 30

Data Bytes: 36

Load / Store Stack:



lw $t1, c

1, opcode
1, register & 2, address 

4 data trans



lw $t2, b

1, opcode
1, register & 2, address

4 data trans




add $t3, $t2, $t1
1, opcode
3, register & 0, address

0 data trans



sw $t3, 0(a)

1, opcode
1, register & 2, address

4 data trans



* Occurs Three Times 
Code Bytes: 48

Data Bytes: 36
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This linearly increases until 32, so there will be 32 terms ORed and 33 terms ANDed.

For every 4 ANDed terms, another gate will have to be implement since our max is 4.

For every 4 of those gates, yet another will have to be implemented.  This is logarithmic.
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6)    Summary of All Pages:

16-Bit Ripple Carry

Total Cost:  480

Calculated Delay: 90 ns (11,111,1111 additions / second)
QuickSim Measured Delay: 78 ns (12,820,512 additions / second)
32-Bit Version: 160 ns

64-Bit Version: 320 ns

Linear Delay Equation:  Delay = 5 ns times # bits

16-Bit Carry Look Ahead

Total Cost: 923

(We could eliminate about 50 if we consider the back we don’t need generate and propagate for the binding for the outside CLU)

Calculated Delay: 32 ns (31,250,000 additions / second)
QuickSim Measured Delay: 31 ns (32,258,064 additions / second)
32-Bit Version: 47 ns

64-Bit Version: 49 ns

Logarithmic Delay: Approximately Constant Times Log_Base_4(BITS)
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