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Introduction 
 
WIMP is an interleaved multi-threaded processor designed to exploit the data parallelism 
inherent in many multi-media DSP applications. It handles four physical threads that are 
interleaved to share the hardware resources. Threads are processed in a round robin 
scheme, and each thread is given a single cycle for processing.  
 

 
Figure 1: Round robin scheme for processing threads 

 
The time elapsed before the same thread is processed again is called a machine cycle. In 
the case show in Figure 1, a machine cycle is equal to 4 clock cycles.  
 
In addition, an instruction in each thread requires four clock cycles for completion as 
shown in Figure 2. The time elapsed from the instruction fetch to instruction commit for 
each thread constitutes a single thread cycle. 
 

 
Figure 2: A single thread cycle 

Figure 3 shows when each thread is processed and what stages each thread passes 
through. Having the number of hardware threads equal or greater than the latency 
eliminates any forms of data dependency, hence ensuring no stalls. This architecture is 
feasible when the target application set possesses enough parallelism to fill up the four 
physical threads. The round robin scheme ensures that all resources perform useful work 
as long as all the hardware threads are active.  
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achine C

ycle

 
Figure 3: Interleaved multithreading 

At reset, only thread 0 is active while all other threads are dead. At run time, any active 
thread can activate another dead thread. If the thread to be activated is already running, 
an exception occurs in the thread that is trying to activate the new thread. A thread cannot 
kill another thread; a thread can only kill itself. The behavior is undefined if two thread 
try to active a new thread in the same machine cycle. 
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WIMP Architecture 

 Register Map 
 
This section describes the register map of WIMP as shown in Figure 4, Figure 5 and 
Figure 6. 
 
Register file 
 
Architecturally, WIMP has four register files, one for every physical thread. The four 
register files are mutually exclusive, but all have the same properties. Every register file 
has two write ports and three read ports. They are 8 deep and 16-bits wide. During 
normal operations, R0 register is always 0 and cannot be written into. A write into R0 
does not generate any exceptions. When an exception occurs due to some other 
instruction, the processor enters debug mode and R0 is writeable like any other general-
purpose register. When an interrupt occurs, R0 is writeable only when the processor state 
is being saved or restored. R0 is zero and non-writable when the interrupt is being 
serviced by the ISR (Interrupt Service Routine).  
 

 
Figure 4: Register map 

 
Program Counter 
 
Every thread has an independent program counter that is 16-bits wide. At reset, all 
program counters fetch from address 0x0000; however, only the program counter for 
thread 0 increments since only thread 0 is active at system reset. The program counter is 
incremented by 2 to fetch the new instructions. 
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Interrupt Register 
 
A device interrupting the processor provides a starting address of the ISR on the interrupt 
bus. This address is latched into the interrupt register when the interrupt is acknowledged. 
The interrupt register is accessed by get.intr instruction that copies the contents of the 
interrupt register into the register file. WIMP has four such interrupt registers for each 
thread.  
 
Exception Register 
 
The exception register is a 16-bit register that stores the exception type when an 
exception occurs.  Each bit of an exception register is assigned to an exception type. 
Table 1 shows definitions for each bit in the exception register. Every thread has its own 
exception register, which is mutually exclusive with the other exception registers. 
 

Table 1: EXR Definition 

BIT NUMBERS IN EXR EXCEPTION 
0 ILLEGAL_INSTRUCTION 
1 UNALIGNED_ADDRESS 
2 ILLEGAL_ADDRESS 
3 INIT_THREAD 
4 ILLEGAL_WAIT 

5-15 Reserved  
 
 
Special Register 1 
 
SPR1 is a special register that records the address of the next instruction when an 
interrupt occurs. This is the return address of the program once an interrupt is serviced. 
The special register 1 is read by the get.spr1 instruction that copies the contents of the 
special register into the register file. Every thread has access to its own SPR1 that is 16-
bits wide. 
 
Special Register 2 
 
SPR2 is a special register that records the address of the current instruction when an 
exception occurs. This register can be accessed by the get.spr2 instruction that copies the 
contents of the SPR2 into the register file. Every thread has its own SPR2 that is 16-bits 
wide.  
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Figure 5: Register map (flag, debug, intrmask) 

 
Flag Register 
 
WIMP employs a limited form of predication applicable to the jump instructions. The 8-
bit flag register is written by arithmetic instructions and compare instructions, and is read 
by the jump instructions. WIMP provides a flag register for every thread. In each of the 
flag registers, bit(0) is always 1. A write into the flag(0) does not cause any exceptions. 
The compare instructions can explicitly set the bits flag(1) through flag(7). Some 
arithmetic instructions listed in Table 2 implicitly set flag(7) and flag(6) when an 
overflow or underflow is detected.  
 
Examples explaining the behavior of the flag register: 
 
cmp.ne.16 $1, $2, 3 # compare the contents of  

$1 and $2. If not equal, set flag(3) else reset flag(3) 
 
cmp.ne.8 $1, $2, 3 # compare the contents of  

$1 (lower byte) and $2 (lower byte) If not equal, set flag(3) else 
reset flag(3) 
$1 (higher byte) and $2 (higher byte) If not equal, set flag(4) else 
reset flag(4) 

 
add.16 $1, $2, $3 # Add $1 and $2 and store in $3 
   If result is > 216-1, set flag(6) else reset flag(6) 
 
add.8 $1, $2, $3 # Add $1 (lower byte) and $2 (lower byte) and store in $3 (lower 

byte) 
   If result is > 28-1, set flag(6) else reset flag(6) 

# Add $1 (higher byte) and $2 (higher byte) and store in $3 (higher 
byte) 

   If result is > 28-1, set flag(7) else reset flag(7) 



Architecture Manual   

 8

 

 

 

Table 2: Arithmetic instructions effecting the flag register 

ARITHMETIC INSTRUCTION WHEN 
ADD.8 Result > 28 - 1 
ADD.16 Result > 216 - 1 
ADDI.8 Result > 28 – 1 
ADDI.16 Result > 216 – 1 

SUB.# Result < 0 
SUBI.# Result < 0 
AVG.# Reset flags 

SAVG.# Result < 0 
MUL Reset flags 
MAC Result > 216 - 1 

 
Debug 
 
The debug register is a one-bit register available independently for every thread. When 
the debug register is 1, register R0 of the register file is writable. When the debug register 
is 0, register R0 is not writable. The debug register can be explicitly set and reset using 
the set.debug instruction. In addition, debug is implicitly set when an interrupt or an 
exception occurs.  
 
Interrupt Mask 
 
The interrupt mask is one-bit register that cannot be accessed by any instruction. There is 
an interrupt mask register for every thread. External interrupts are not serviced when the 
interrupt mask is set. The interrupt mask is set implicitly when an interrupt or an 
exception occurs. This allows an exception to occur when an interrupt occurs, but not the 
other way round. The interrupt mask is implicitly reset after the system completes 
servicing the interrupt, restores the processor state, and returns to normal execution of the 
program.  
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Figure 6: Register map (wait reg, wait state, and TAR) 

 
 
Thread Active Register 
 
The Thread Active Register (TAR) specifies which threads are active and which are dead. 
The bit corresponding to a thread is set when ever a thread is activated by the init 
instruction.  A bit in TAR is reset whenever a threads corresponding bit dies, either due to 
an exception or a kill instruction.   Table 3 shows the relation between the bits in the 
TAR and the physical threads.  

 
 Table 3: Relation between bits in TAR and physical threads 

Bit Thread 
TAR[0] Thread 0 
TAR[1] Thread 1 
TAR[2] Thread 2 
TAR[3] Thread 3 

 
Wait Register 
 
The wait register and the wait state work together to implement thread synchronization. 
The wait register is 4 deep; where each row corresponds to a synchronization point. 
Every row is 4-bits wide, corresponding to thread 0 through thread 3.  The wait register is 
primarily addressed by the synchronizing point.  The wait register is modified by wait 
instructions. The wait register can be read by the get.wait_reg instruction that copies the 
contents of the wait register into the register file.  
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Wait State 
 
The wait state register is four deep; where each row corresponds to a thread.  Every row 
is three bits wide.  The first bit (ws) indicates if the thread is waiting to be synchronized. 
If so, the next two bits, S0 and S1, indicate the synchronizing point in the wait register that 
the thread is waiting on.  The wait state is modified by the wait instruction and can be 
read using the get.ws instruction that copies the wait state register into the register file.  
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 Memory Map 
 
WIMP instructions address three sections of memory, which are: Instruction Memory, 
Data Memory and Video RAM.  The instruction memory is accessed by the PC (program 
counter), loads, and stores; while only loads and stores access data memory. The Video 
RAM is a write only memory, accessible only to some special store instructions.  
 

 
Figure 7: WIMP Memory map 

 
WIMP has following restrictions that on the memory: 
 

• 0x0000 – 0x3FFF cannot be written into (an exception will be 
generated otherwise) 

• 0x4000 – 0x7FFF can be written into only by instructions that are 
present in the range 0x0000 – 0x3FFF (an exception will be generated 
otherwise) 

• 0x8000 – 0xFFFF can be written and read by any instruction 
• Video RAM is write only; accessed by special instructions only 
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The following table shows the memory map of the WIMP system. 
 

Table 4: WIMP memory map 

Table 4.1: WIMP Memory 
Range (Hex) Map 

0000 – 7FFF Program Memory 
8000 – FFFF Data Memory 

 
Table 4.2: Program Memory 

Range (Hex) Map 
0000 – 03FF Thread 0 System Memory 
0400 – 07FF Thread 1 System Memory 
0800 – 0BFF Thread 2 System Memory 
0C00 – 0FFF Thread 3 System Memory 
1000 – 3FFF Operating System Memory 
4000 – 7FFF User Program Memory 
 

Table 4.3: Thread0 System Memory 
Range (Hex) Map 

0000 – 000F Reserved 
0010 – 00FF Exception Handler 
0110 – 01FF Interrupt Handler – Init 
0200 – 02FF Interrupt Handler – Restore 
 

Table 4.4: Thread 1 System Memory 
Range (Hex) Map 

0400 – 040F Reserved 
0410 – 04FF Exception Handler 
0500 – 05FF Interrupt Handler – Init 
0600 – 06FF Interrupt Handler – Restore 
 

Table 4.5: Thread 2 System Memory 
Range (Hex) Map 

0800 – 080F Reserved 
0810 – 08FF Exception Handler 
0900 – 09FF Interrupt Handler – Init 
0A00 – 0AFF Interrupt Handler – Restore 
 

Table 4.6: Thread 3 System Memory 
Range (Hex) Map 

0C00 – 0C0F Reserved 
0C10 – 0CFF Exception Handler 
0D00 – 0DFF Interrupt Handler – Init 
0E00 – 0EFF Interrupt Handler – Restore 
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Table 4.7: Operating System Memory 
Range (Hex) Map 

1000 – 12FF Monitor program 
1300 – 13FF Keyboard driver (ISR) 
1400 – 14FF SPAT driver 
1500 – 2FFF OS command routines 
 
 

Table 4.8: Data Memory 
Range (Hex) Map 

8000 – 8FFF OS Data Memory 
9000 – FFFF User Data Memory 
 
 

Table 4.9: OS Data Memory 
Range (Hex) Map 

8000 – 803F Keyboard buffer 
8040 – 804F Thread 0 command area 
8050 – 805F Thread 1 command area 
8060 – 806F Thread 2 command area 
8070 – 807F Thread 3 command area 
8080 – 80FF Thread 0 write buffer 
8100 – 817F Thread 1 write buffer 
8180 – 81FF Thread 2 write buffer 
8200 – 827F Thread 3 write buffer 
8280 – 829F Thread 0 dump memory 
82A0 – 82BF Thread 1 dump memory 
82C0 – 82DF Thread 2 dump memory 
82E0 – 82FF Thread 3 dump memory 
8300 – 83FF Thread 0 frame storage 
8400 – 84FF Thread 1 frame storage 
8500 – 85FF Thread 2 frame storage 
8600 – 86FF Thread 3 frame storage 
8700 – 8FFF System variable storage 
 

Table 4.10: Keyboard Buffer 
Range (Hex) Map 

8000 – 8001 Buffer ready 
8002 – 803F Buffer area 
 

Table 4.11: Thread 0 command area 
Range (Hex) Map 

8040 – 8041 Command 
8042 – 8043 Status 
8044 – 8045 Parameter 1 
8046 – 8047 Parameter 2 
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8048 – 8049 Parameter 3 
 

Table 4.12: Thread 1 command area 
Range (Hex) Map 

8050 – 8051 Command 
8052 – 8053 Status 
8054 – 8055 Parameter 1 
8056 – 8057 Parameter 2 
8058 – 8059 Parameter 3 
 

Table 4.13: Thread 2 command area 
Range (Hex) Map 

8060 – 8061 Command 
8062 – 8063 Status 
8064 – 8065 Parameter 1 
8066 – 8067 Parameter 2 
8068 – 8069 Parameter 3 
 

Table 4.14: Thread 3 command area 
Range (Hex) Map 

8070 – 8071 Command 
8072 – 8073 Status 
8074 – 8075 Parameter 1 
8076 – 8077 Parameter 2 
8078 – 8079 Parameter 3 
   

Table 4.15: Thread 0 Write Buffer 
Range (Hex) Map 

8080 – 8081 Buffer ready 
8082 – 80FF Buffer area 
 

Table 4.16: Thread 1 Write Buffer 
Range (Hex) Map 

8100 – 8101 Buffer ready 
8102 – 80FF Buffer area 
 

Table 4.17: Thread 2 Write Buffer 
Range (Hex) Map 

8180 – 8181 Buffer ready 
8182 – 81FF Buffer area 
 

Table 4.18: Thread 3 Write Buffer 
Range (Hex) Map 

8200 – 8201 Buffer ready 
8202 – 82FF Buffer area 
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Table 4.19: Thread 0 Dump Memory 
Range (Hex) Map 

8280 – 8281 PC/PC+2 
8282 Predicate register 
8284 – 8285 EXR 
8286 – 8287 R1 
8288 – 8289 R2 
828A – 828B R3 
828C – 828D R4 
828E – 828F R5 
8290 – 8291 R6 
8292 – 8293 R7 
8294 – 8295 WAIT_REG 
8296 – 8297 TAR 
8298 – 8299 Thread id 
 

Table 4.20: Thread 1 Dump Memory 
Range (Hex) Map 

82A0 – 82A1 PC/PC+2 
82A2 Predicate register 
82A4 – 82A5 EXR 
82A6 – 82A7 R1 
82A8 – 82A9 R2 
82AA – 82AB R3 
82AC – 82AD R4 
82AE – 82AF R5 
82B0 – 82B1 R6 
82B2 – 82B3 R7 
82B4 – 82B5 WAIT_REG 
82B6 – 82B7 TAR 
82B8 – 82B9 Thread id 
 

Table 4.21: Thread 2 Dump Memory 
Range (Hex) Map 

82C0 – 82C1 PC/PC+2 
82C2 Predicate register 
82C4 – 82C5 EXR 
82C6 – 82C7 R1 
82C8 – 82C9 R2 
82CA – 82CB R3 
82CC – 82CD R4 
82CE – 82CF R5 
82D0 – 82D1 R6 
82D2 – 82D3 R7 
82D4 – 82D5 WAIT_REG 
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82D6 – 82D7 TAR 
82D8 – 82D9 Thread id 
 

Table 4.22: Thread 3 Dump Memory 
Range (Hex) Map 

82E0 – 82E1 PC/PC+2 
82E2 Predicate register 
82E4 – 82E5 EXR 
82E6 – 82E7 R1 
82E8 – 82E9 R2 
82EA – 82EB R3 
82EC – 82ED R4 
82EE – 82EF R5 
82F0 – 82F1 R6 
82F2 – 82F3 R7 
82F4 – 82F5 WAIT_REG 
82F6 – 82F7 TAR 
82F8 – 82F9 Thread id 
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 Instruction Set 
 
The processor incorporates a small subword parallel ISA aimed at multimedia DSP 
applications. Table 5 lists all the instructions present in the WIMP’s ISA. 

 
Table 5: WIMP instructions 

Instruction Function 

ADD.# RD  RA + RB 
SUB.# RD  RA - RB 
AVG.# RD  (RA + RB) >> 1 
SAVG.# RD  (RA - RB) >> 1 
RSL.# RD  RA >> RB 
RSA.# RD  {RA[MSB,...],RA} >> RB  
LSL.# RD  RA << RB 
ROT.# RD  ROTATE_LEFT(RA by RB) 
CMP.EQ.# FLAG[CB]  (RA == RB) ? 1 : 0 
CMP.GT.# FLAG[CB]  (RA > RB) ? 1 : 0 
CMP.LT.# FLAG[CB]  (RA < RB) ? 1 : 0 
CMP.NE.# FLAG[CB]  (RA != RB) ? 1 : 0 
CMP.GE.# FLAG[CB]  (RA >= RB) ? 1 : 0 
CMP.LE.# FLAG[CB]  (RA <= RB) ? 1 : 0 
MAC.LO RD[15:0] RD[15:0] + RA[7:0] x RB[7:0] 
MAC.HI RD[15:0]  RD[15:0] + RA[15:8] x RB[15:8] 
MUL.LO RD[15:0] RA[7:0] x RB[7:0] 
MUL.HI RD[15:0]  RA[15:8] x RB[15:8] 
MIX.LO INTERLEAVE 
MIX.HI INTERLEAVE 
MUX.LO INTERLEAVE 
MUX.HI INTERLEAVE 
AND RD  RA AND RB 
OR RD  RA OR RB 
XOR RD  RA XOR RB 
NOT RD NOT RA 
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COPY.LO RD[7:0] RA[7:0] 
COPY.HI RD[15:8]  RA[15:8] 
LW RD  M[RA] 
LWI RD  M[RA], RA RA + 2 
LWD RD M[RA], RA RA – 2 
SW M[RB] RA 
SWI M[RB] RA, RA RA + 2 
SWD M[RB] RA, RA RA - 2 
READ READ DATA FROM PORT: IM 
WRITE OUTPUT RB TO PORT: IM 
WAIT SPECIFY SCHRONIZED THREADS 
KILL KILL CURRENTLY EXECUTING THREAD 
INIT INITIALIZE THREAD #IM AT MEMORY RA 
JMPR PC RA 
JALR R7 PC, PC RA 
JMPI PC PC + IMM 
JALI R7 PC, PC PC + IMM 
LI.HI LOAD IMM INTO RD[15:8] 
LI.LO LOAD IMM INTO RD[7:0] 
JMP.SPR1 PC  SPR1 
GET.FLAG RD[7:0]  FLAG, RD[15:8] Cleared 
GET.SPR1 RD  SPR1 
GET.SPR2 RD  SPR2 
GET.EXR RD  EXR, Clear EXR 
GET.WAIT_REG RD[7:0]  WAIT_REG, RD[15:8] Cleared 
GET.TAR RD[3:0]  TAR, RD[15:4] Cleared 
GET.WS RD[3:0]  WS, RD[15:4] Cleared 
GET.INTR RD[3:0]  INTR Register 
GET.THREAD RD[1:0]  Thread ID 
PUT.FLAG FLAG  RA[7:0] 
PUT.SPR1 SPR1 RA 
PUT.DEBUG PUT IMM INTO DEBUG 
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PUT.INTRMASK Masks/Unmasks the interrupt 
SWFT M[RB] RA, Store RA into an output port 
SWSG Store into Video RAM 
SWSGI Store into Video RAM, Increment address by 1 
SWSGD Store into Video RAM, Decrement address by 1 
NOP DOES ABSOLUTELY NOTHING 
Notes:   # can take either 8 or 16 to indicate the subword size. Example, 
ADD.8 will add the lower and higher bytes of RA and RB where as ADD.16 
considers RA and RB as single 16-bit words.  
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1. ADD.# 
 
ADD.8 $RA, $RB, $RD 
ADD.16 $RA, $RB, $RD 
 
The contents of register RA and register RB are added and written into register RD. If the 
16-bit addition results in a value greater than 216-1, the result wraps around and flag(6) is 
set, other wise flag(6) is reset. If any of the two 8-bit additions result in a value greater 
than 28-1, the corresponding numbers wrap around; flag(6) is set if the lower byte 
addition overflows, reset otherwise.  Flag(7) is set if the higher byte addition overflows, 
reset otherwise. 
 
2. SUB.# 
 
SUB.8 $RA, $RB, $RD 
SUB.16 $RA, $RB, $RD 
 
The contents of register RB are subtracted from the contents of register RA and written 
into register RD. If the 16-bit subtraction results in a value less than 0, the result wraps 
around and flag(6) is set, otherwise flag(6) is reset. If any of the two 8-bit subtractions 
result in a value less than 0, the corresponding numbers wrap around.  Flag(6) is set if the 
lower byte subtraction underflows, reset otherwise; flag(7) is set if the higher byte 
subtraction underflows, reset otherwise. 
 
3. AVG.# 
 
AVG.8 $RA, $RB, $RD 
AVG.16 $RA, $RB, $RD 
 
The contents of register RA and register RB are added; the result is right shifted and 
written into register RD. Flag(6) is cleared if the instruction is AVG.16. Flag(7) and 
flag(6) are cleared if the instruction is AVG.8 
 
4. SAVG.# 
 
SAVG.8 $RA, $RB, $RD 
SAVG.16 $RA, $RB, $RD 
 
The contents of register RB are subtracted from the contents of register RA; the result is 
right shifted and written into register RD.  If the 16-bit SAVG results in a value less than 
0, the result wraps around and flag(6) is set, other wise flag(6) is reset.  If any of the two 
8-bit additions result in a value less than 0, then the corresponding numbers wrap around. 
Flag(6) is set if the lower byte SAVG underflows, reset otherwise; flag(7) is set if the 
higher byte SAVG underflows, reset otherwise. 
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5. RSL.# 
 
RSL.8 $RA, $RB, $RD 
RSL.16 $RA, $RB, $RD 
 
The contents of register RA are right shifted with zero padding by the amount indicated 
in the lower order bits of register RB and the result is written into register RD. The flag 
register is unaffected. 
 
6. RSA.# 
 
RSA.8 $RA, $RB, $RD 
RSA.16 $RA, $RB, $RD 
 
The contents of register RA are right shifted with MSB extension by the amount 
indicated in the lower order bits of register RB and the result is written into register RD. 
The flag register is unaffected. 
 
7. LSL.# 
 
LSL.8 $RA, $RB, $RD 
LSL.16 $RA, $RB, $RD 
 
The contents of register RA are left shifted with zero padding by the amount indicated in 
the lower order bits of register RB and the result is written into register RD. The flag 
register is unaffected. 
 
8. ROT.# 
 
ROT.8 $RA, $RB, $RD 
ROT.16 $RA, $RB, $RD 
 
The contents of register RA are rotated left by the amount indicated in the lower order 
bits of register RB and the result is written into register RD. The flag register is 
unaffected. 
 
9. CMP.EQ.# 
 
CMP.EQ.8 $RA, $RB, $CB 
CMP.EQ.16 $RA, $RB, $CB 
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The contents of register RA and register RB are compared for equality. If the result is 
true, the predicate bit indicated by $CB is set to 1, otherwise set to 0. The contents of RA 
and RB are unaffected.  
 
10. CMP.GT.# 
 
CMP.GT.8 $RA, $RB, $CB 
CMP.GT.16 $RA, $RB, $CB 
 
The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register 
RA are greater than the contents of register RB, otherwise set to 0. 
 
11. CMP.LT.# 
 
CMP.LT.8 $RA, $RB, $CB 
CMP.LT.16 $RA, $RB, $CB 
 
The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register 
RA are less than the contents of register RB, otherwise set to 0. 
 
12. CMP.NE.# 
 
CMP.NE.8 $RA, $RB, $CB 
CMP.NE.16 $RA, $RB, $CB 
 
The contents of register RA and register RB are compared for inequality. If the result is 
true, the predicate bit indicated by $CB is set to 1, otherwise set to 0. The contents of RA 
and RB are unaffected.  
 
13. CMP.GE.# 
 
CMP.GE.8 $RA, $RB, $CB 
CMP.GE.16 $RA, $RB, $CB 
 
The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register 
RA are greater than or equal to the contents of register RB, otherwise set to 0. 
 
14. CMP.LE.# 
 
CMP.LE.8 $RA, $RB, $CB 
CMP.LE.16 $RA, $RB, $CB 
 
The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register 
RA are less than or equal to the contents of register RB, otherwise set to 0. 
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15. MAC.LO 
 
MAC.LO $RA, $RB, $RD 
MAC.LO $RA, $RB, $RD 
 
The lower bytes of register RA and RB are multiplied and added to the contents of RD. 
The result is written back into RD. If the MAC results in a value greater than 216-1, the 
result wraps around and flag(6) is set, otherwise flag(6) is reset.  
 
16. MAC.HI 
 
MAC.HI $RA, $RB, $RD 
MAC.HI $RA, $RB, $RD 
 
The higher bytes of register RA and RB are multiplied and added to the contents of RD. 
The result is written back into RD. If the MAC results in a value greater than 216-1, the 
result wraps around and flag(6) is set, otherwise flag(6) is reset.  
 
17. MUL.LO 
 
MUL.LO $RA, $RB, $RD 
MUL.LO $RA, $RB, $RD 
 
The lower bytes of register RA and RB are multiplied and written into RD.  Flag(6) is 
reset at the end of this instruction.  
 
18. MUL.HI 
 
MUL.HI $RA, $RB, $RD 
MUL.HI $RA, $RB, $RD 
 
The higher bytes of register RA and RB are multiplied and written back into RD.  Flag(6) 
is reset at the end of this instruction.  
 
19. MIX.LO 
 
MIX.LO $RA, $RB, $RD 
 
The lower byte of register RA and the higher byte in register RB are interleaved and 
written into RD. The flag register is unaffected. 
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RA

RB

RD

MIX.LO

15…………..8  7…………….0

 
Figure 8: MIX.LO 

 
20. MIX.HI 
 
MIX.HI $RA, $RB, $RD 
 
The higher byte of register RA and the lower byte of register RB are interleaved and 
written into RD. The flag register is unaffected. 

RA

RB

RD

MIX.HI

15…………..8  7…………….0

 
Figure 9: MIX.HI 

21. MUX.LO 
 
MUX.LO $RA, $RB, $RD 
 
The lower byte of register RA and the higher byte in register RB are interleaved and 
swapped and then written into RD. The flag register is unaffected. 
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RA

RB

RD

MUX.LO

15…………..8  7…………….0

 
Figure 10: MUX.LO 

 
22. MUX.HI 
 
MUX.HI $RA, $RB, $RD 
 
The higher byte of register RA and the lower byte in register RB are interleaved and 
swapped and then written into RD. The flag register is unaffected. 

RA

RB

RD

MUX.HI

15…………..8  7…………….0

 
Figure 11: MUX.HI 

 
23. AND 
 
AND $RA, $RB, $RD 
 
The contents of register RA and register RB are ANDed and written into register RD. The 
flag register is unaffected. 
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24. OR 
 
AND $RA, $RB, $RD 
 
The contents of register RA and register RB are ORed and written into register RD. The 
flag register is unaffected. 
 
25. XOR 
 
XOR $RA, $RB, $RD 
 
The contents of register RA and register RB are XORed and written into register RD. The 
flag register is unaffected. 
 
26. NOT 
 
NOT $RA, $RD 
 
The contents of register RA are complemented and written into register RD. The flag 
register is unaffected. 
 
27. COPY.LO 
 
COPY.LO $RA, $RD 
 
The lower byte of the register RA is copied to the lower and higher byte of the register 
RD. The flag register is unaffected. 
 

RA

RD

COPY.LO

15…………..8  7…………….0

 
Figure 12: COPY.LO 
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28. COPY.HI 
 
COPY.HI $RA, $RD 
 
The higher byte of the register RA is copied to the lower and higher byte of the register 
RD. The flag register is unaffected. 
 

RA

RD

COPY.HI

15…………..8  7…………….0

 
Figure 13: COPY.HI 

29. LW 
 
LW $RA, $RD 
 
The processor loads the register RD with the data present in the location pointed to by the 
contents of register RA. If the memory address present in the register RA is not aligned to 
words, an UNALIGNED_ADDRESS exception occurs.  
 
30. LWI 
 
LWI $RA, $RD 
 
The processor loads the register RD with the data present in the location, which is pointed 
to by the contents of register RA. If the memory address present in the register RA is not 
aligned to words, an UNALIGNED_ADDRESS exception occurs. In addition, the 
processor will increment the contents of RA by 2. 
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31. LWD 
 
LWD $RA, $RD 
 
The processor loads the register RD with the data present in the location, which is pointed 
to by the contents of register RA. If the memory address present in the register RA is not 
aligned to words, an UNALIGNED_ADDRESS exception occurs. In addition, the 
contents of RA are decremented by 2.  
 
32. SW 
 
SW $RA, $RB 
 
The processor stores the contents of RB into the memory location specified by register 
RA. If the memory address present in the register RA is not aligned to words, an 
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or 
program memory, an ILLEGAL_ADDRESS exception occurs.  
 
33. SWI 
 
SWI $RA, $RB 
 
The processor stores the contents of RB into the memory location specified by register 
RA. If the memory address present in the register RA is not aligned to words, an 
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or 
program memory, an ILLEGAL_ADDRESS exception occurs. In addition, the contents 
of RA are incremented by 2.  
 
34. SWD 
 
SWD $RA, $RB 
 
The processor stores the contents of RB into the memory location specified by register 
RA. If the memory address present in the register RA is not aligned to words, an 
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or 
program memory, an ILLEGAL_ADDRESS exception occurs. In addition, the contents 
of RA are decremented by 2.  
 
35. LI.HI 
 
LI.HI IMM8, $RD 
 
The higher byte of the register RD is loaded with IMM8. 
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36. LI.LO 
 
LI.LO IMM8, $RD 
 
The lower byte of the register RD is loaded with IMM8. 
 
 
37. READ 
 
READ IMM3, $CB, $RD 
 
The thread reads the input port indicated by IMM3. If the READ is successful, the 
predicate bit indicated by $CB is set and the value is written into RD. If the READ is 
unsuccessful, RD is left untouched and predicate bit indicated by $CB cleared. 
 
38. WRITE 
 
WRITE IMM3, $CB, $RD 
 
The thread writes the contents of RD into the port indicated by IMM3. If the WRITE is 
successful, the predicate bit indicated by $CB is set, otherwise $CB is cleared. 
 
39. WAIT 
 
WAIT IMM[3], IMM[2], IMM[1], IMM[0], S10 
 
The processor supports a very simple form of thread synchronization using the WAIT 
instruction.  
 
IMM[0]  Thread 0 
IMM[1]  Thread 1 
IMM[2]  Thread 2 
IMM[3]  Thread 3 
 
Say the instruction in thread 0 is  
WAIT 1, 0, 1, 0, 0 
When the processor comes across this instruction, it will stall thread 1 until it comes 
across a similar instruction in thread 3 that points to the synchronization point 0.  
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Figure 14: Illustrating thread synchronization 

 
It wouldn’t matter if thread 3 had reached the barrier point before. Thread 3 will stall 
until thread 1 reaches the same instruction. Both the WAIT instructions can be in 
different places in the memory.  
 
40. KILL 
 
KILL 
 
The KILL instruction unconditionally kills the hardware thread. The KILL instruction 
does not have any parameters. A thread can be killed only from within itself using the 
KILL instruction. Once the thread is killed, the PC does not increment and the hardware 
thread will not respond to any interrupts. The thread can be brought up only from another 
thread or system reset. 
 
41. INIT 
 
INIT $RA, IMM2 
 
During normal working, a thread can initiate another hardware thread with the INIT 
instruction.  
 
Example, 
Thread 2 has the instruction, 

 
INIT R5, 3 
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The processor checks if thread 3 is already active. If so, an INIT_THREAD exception 
occurs in thread 2 while thread 3 continues as is. If thread 3 is not active, the PC for 
thread 3 is loaded with the contents of R5. Thread 3 will start in the next machine cycle. 
Once thread 3 is active, it can be killed only be the KILL instruction present in its 
instruction stream. Thread 2 will have no more control over thread 3.  
 
Initializing a thread comes into effect in the next machine cycle. During this period, if 
another thread tries to initialize the same thread, the behavior is unpredictable.  
 
If all the threads are killed, the processor halts. The processor can be activated only with 
the system reset. There should be at least one active thread at all times.  
 
42. JMPR 
 
JMPR $RA, CB 
 
The program control jumps to the location present in the register RA if the bit defined by 
CB is 1, otherwise normal program execution proceeds. The jump is unconditional if CB 
is specified to 0. If the contents of register RA are not word aligned, an 
UNALIGNED_ADDRESS exception occurs. If an attempt is made to jump to the data 
area of the memory, an ILLEGAL_ADDRESS exception occurs.  
 
43. JALR 
JALR $RA, CB 
 
The program control jumps to the location present in the register RA if the bit defined by 
CB is 1, otherwise normal program execution proceeds. The program counter + 2 is 
stored in R7. The jump is unconditional if CB is specified to 0. If the contents of register 
RA are not word aligned, an UNALIGNED_ADDRESS exception occurs. If an attempt 
is made to jump to the data area of the memory, an ILLEGAL_ADDRESS exception 
occurs. 
 
44. JMPI 
 
JMPI IMM8, CB 
 
The program control jumps to the location indicated by the sum of sign-extended IMM8 
and the PC if the bit defined by CB is 1, otherwise normal program execution proceeds. 
The jump is unconditional if CB is specified to 0. If the contents of register RA are not 
word aligned, an UNALIGNED_ADDRESS exception occurs. If an attempt is made to 
jump to the data area of the memory, an ILLEGAL_ADDRESS exception occurs. 
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45. JALI 
 
JALI IMM8, CB 
 
The program control jumps to the location indicated by the sum of sign-extended IMM8 
and the PC if the bit defined by CB is 1, otherwise normal program execution proceeds. 
The program counter + 2 is stored in R7. The jump is unconditional if CB is specified to 
0. If the contents of register RA are not word aligned, an UNALIGNED_ADDRESS 
exception occurs. If an attempt is made to jump to the data area of the memory, an 
ILLEGAL_ADDRESS exception occurs. 
 
46. GET.FLAG 
 
GET.FLAG $RD 
 
Copies the 8-bit flag register (predicate register) into the lower byte of register RD.  The 
higher byte of register RD is cleared. 
 
47. GET.SPR1 
 
GET.SPR1 $RD 
 
Copies the SPR1 register (that holds the address to jump to after an interrupt is serviced) 
into register RD. 
 
48. GET.SPR2 
 
GET.SPR2 $RD 
 
Copies the contents of SPR2 register (that holds the address of the instruction which has 
caused an exception) to the register indicated by RD. 
 
49. GET.EXR 
 
GET.EXR $RD 
 
Copies the EXR register (that holds all the exceptions that have occurred for the 
instruction) to register RD.  In addition the EXR register is cleared. 
 
50. GET.WAIT_REG 
 
GET.WAIT_REG $RD 
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Copies the 8-bit WAIT_REG register (synchronization register) into the lower byte of 
register RD.  The higher byte of register RD is cleared. 
 
51. GET.TAR 
 
GET.TAR $RD 
 
Copies the 4-bit TAR register (thread active register) into the lower four bits of register 
RD.  The upper twelve bits of register RD are cleared. 
 
52. GET.WS 
 
GET.WS $RD 
 
Copies the 4-bit WS register (holds which threads are currently waiting) into the lower 
four bits of register RD.  The upper twelve bits of register RD are cleared. 
 
53. GET.INTR 
 
GET.INTR $RD 
 
Copies the contents of INTR_ADDR register (holds address to jump to when interrupt 
occurs) to register RD. 
 
54. GET.THREAD 
 
GET.THREAD $RD 
 
Gets the current thread id and places it in $RD. The upper fourteen bits of register RD are 
cleared.  
 
55. PUT.FLAG 
 
PUT.FLAG $RA 
 
Loads the flag register with the lower byte of register RA. 
 
56. PUT.SPR1 
 
PUT.SPR1 $RA 
 
Loads the SPR1 register with the contents of register RA. 
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57. PUT.DEBUG 
 
PUT.DEBUG IMM1 
 
Writes the value specified in the IMM field into the 1-bit DEBUG register. When the 
IMM field is 1, R0 becomes writable. When the immediate field is 0, R0 is cleared and 
cannot be written into. 
 
58. PUT.INTRMASK 
 
PUT.INTRMASK IMM1 
 
Writes the specified value into the interrupt mask. If the IMM1 value is 1, the mask is set 
at the end of the instruction. Interrupts will not be acknowledged till the interrupt mask is 
cleared. If the IMM1 value is 0, the interrupt mask is cleared at the end of the instruction, 
which allows interrupts to be acknowledged. Interrupts are not acknowledged when this 
instruction is being executed, irrespective of whether the interrupt mask is being set or 
reset.  
 
59. JMP.SPR1 
 
JMP.SPR1 
 
Loads the PC with the contents of the SPR1 register.  In addition, the intr_mask register 
is cleared signifying that the interrupt has been serviced and the processor is ready to 
accept another interrupt. 
 
 
60. NOP 
 
NOP  
 
Does absolutely nothing 
 
61. ADDI.# 
 
ADD.8 $RA, IMM3, $RD 
ADD.16 $RA, IMM3, $RD 
 
The contents of register RA are added to 3-bit IMM3 and written into register RD. If the 
16-bit addition results in a value greater than 216-1, the result wraps around and flag(6) is 
set, otherwise flag(6) is reset. If any of the two 8-bit additions result in a value greater 
than 28-1, then the corresponding numbers wrap around.  Flag(6) is set if the lower byte 
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addition overflows, reset otherwise; flag(7) is set if the higher byte addition overflows, 
reset otherwise. 
 
62. SUBI.# 
 
SUBI.8 $RA, IMM3, $RD 
SUBI.16 $RA, IMM3, $RD 
 
3-bit IMM3 is subtracted from the contents of register RA and written into register RD. If 
the 16-bit subtraction results in a value less than 0, the result wraps around and flag(6) is 
set, otherwise flag(6) is reset. If any of the two 8-bit subtractions result in a value less 
than 0, then the corresponding numbers wrap around. Flag(6) is set if the lower byte 
subtraction underflows, reset otherwise; flag(7) is set if the higher byte subtraction 
underflows, reset otherwise. 
 
63. SWFT 
 
SWFT $RA, $RB, $RD 
 
The contents of register RB are stored into the address pointed by register RA. 
Additionally, the contents of register RB are stored into the output port indicated by RD. 
If the memory address present in the register RA is not aligned to words, an 
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or 
program memory, an ILLEGAL_ADDRESS exception occurs. . If the write into the port 
is successful, the predicate bit 6 is set, otherwise predicate bit 6 is cleared. The store is 
unaffected by the status of the write into the output port.  
 
64. SWSG 
 
SWSG $RA, $RB, $RD 
 
This special instruction allows writes into the video RAM. Concatenating the two lower 
order bits of the contents of register RD and the contents of register RB compute the 
effective address for the store. The contents of register RA are stored into this effective 
address. The contents of register RD can be 1 or 2. The store is cancelled if RD is 0. No 
exceptions are generated.  
 
65. SWSGI 
 
SWSGI $RA, $RB, $RD 
 
This special instruction allows writes into the video RAM.  Concatenating the two lower 
order bits of the contents of register RD and the contents of register RB compute the 
effective address for the store. The contents of register RA are stored into this effective 
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address. The contents of register RD can be 1 or 2. The store is cancelled if RD is 0. No 
exceptions are generated. Additionally, the contents of register RA are incremented by 1. 
 
66. SWSGD 
 
SWSGI $RA, $RB, $RD 
 
This special instruction allows writes into the video RAM. Concatenating the two lower 
order bits of the contents of register RD and the contents of register RB compute the 
effective address for the store. The contents of register RA are stored into this effective 
address. The contents of register RD can be 1 or 2. The store is cancelled if RD is 0. No 
exceptions are generated. Additionally, the contents of register RA are decremented by 1. 
 
67. SWAP 
 
SWAP $RA, $RD 
 
The lower byte and the higher byte of register RA and swapped and placed in RD.  
 

RA

RD

SWAP

15…………..8  7…………….0

 
Figure 15: SWAP 
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Instruction Encoding 
 
Table 6 shows the bit encoding for all the instructions supported by WIMP. All 
instructions have a 5-bit opcode. Instructions that do not have an 8-bit immediate field 
have a 2-bit sub-op. The instructions shaded in yellow are system instructions that help in 
interrupt and exception handling. 
  

Table 6: WIMP instruction encoding 

ADD.# 0 0 0 0 0 0 0/1 RA RA RA RB RB RB RD RD RD 
SUB.# 0 0 0 0 0 1 0/1 RA RA RA RB RB RB RD RD RD 
AVG.# 0 0 0 0 1 0 0/1 RA RA RA RB RB RB RD RD RD 
SAVG.# 0 0 0 0 1 1 0/1 RA RA RA RB RB RB RD RD RD 
RSL.# 0 0 0 1 0 X 0/1 RA RA RA RB RB RB RD RD RD 
RSA.# 0 0 0 1 1 X 0/1 RA RA RA RB RB RB RD RD RD 
LSL.# 0 0 1 0 0 X 0/1 RA RA RA RB RB RB RD RD RD 
ROT.# 0 0 1 0 1 X 0/1 RA RA RA RB RB RB RD RD RD 

CMP.EQ.# 0 0 1 1 0 0 0/1 RA RA RA RB RB RB CB CB CB 
CMP.NE.# 0 0 1 1 0 1 0/1 RA RA RA RB RB RB CB CB CB 
CMP.GT.# 0 0 1 1 1 0 0/1 RA RA RA RB RB RB CB CB CB 
CMP.GE.# 0 0 1 1 1 1 0/1 RA RA RA RB RB RB CB CB CB 
CMP.LT.# 0 1 0 0 0 0 0/1 RA RA RA RB RB RB CB CB CB 
CMP.LE.# 0 1 0 0 0 1 0/1 RA RA RA RB RB RB CB CB CB 
MAC.LO 0 1 0 0 1 X 0 RA RA RA RB RB RB RD RD RD 
MAC.HI 0 1 0 0 1 X 1 RA RA RA RB RB RB RD RD RD 
MUL.LO 0 1 0 1 0 X 0 RA RA RA RB RB RB RD RD RD 
MUL.HI 0 1 0 1 0 X 1 RA RA RA RB RB RB RD RD RD 
MIX.LO 0 1 0 1 1 X 0 RA RA RA RB RB RB RD RD RD 
MIX.HI 0 1 0 1 1 X 1 RA RA RA RB RB RB RD RD RD 
MUX.LO 0 1 1 0 0 X 0 RA RA RA RB RB RB RD RD RD 
MUX.HI 0 1 1 0 0 X 1 RA RA RA RB RB RB RD RD RD 
AND 0 1 1 0 1 0 0 RA RA RA RB RB RB RD RD RD 
OR 0 1 1 0 1 0 1 RA RA RA RB RB RB RD RD RD 
XOR 0 1 1 0 1 1 0 RA RA RA RB RB RB RD RD RD 
NOT 0 1 1 0 1 1 1 RA RA RA X X X RD RD RD 

COPY.LO 0 1 1 1 0 0 0 RA RA RA X X X RD RD RD 
COPY.HI 0 1 1 1 0 0 1 RA RA RA X X X RD RD RD 
SWAP 0 1 1 1 0 1 X RA RA RA X X X RD RD RD 
LW 0 1 1 1 1 0 0 RA RA RA X X X RD RD RD 
LWI 0 1 1 1 1 0 1 RA RA RA X X X RD RD RD 
LWD 0 1 1 1 1 1 0 RA RA RA X X X RD RD RD 
SW 1 0 0 0 0 0 0 RA RA RA RB RB RB X X X 
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SWI 1 0 0 0 0 0 1 RA RA RA RB RB RB X X X 
SWD 1 0 0 0 0 1 0 RA RA RA RB RB RB X X X 
READ 1 0 0 0 1 X 0 IM IM IM CB CB CB RD RD RD 
WRITE 1 0 0 0 1 X 1 IM IM IM CB CB CB RD RD RD 
WAIT 1 0 0 1 0 0 0 IM IM IM IM S S X X X 
KILL 1 0 0 1 0 0 1 X X X X X X X X X 
INIT 1 0 0 1 0 1 0 RA RA RA X IM IM X X X 
JMPR 1 0 0 1 1 X 0 RA RA RA X X X CB CB CB 

JMP.SPR1 1 0 0 1 1 X 1 X X X X X X X X X 
JALR 1 0 1 0 0 X X RA RA RA X X X CB CB CB 
JMPI 1 0 1 0 1 IM IM IM IM IM IM IM IM CB CB CB 
JALI 1 0 1 1 0 IM IM IM IM IM IM IM IM CB CB CB 
LI.HI 1 0 1 1 1 IM IM IM IM IM IM IM IM RD RD RD 
LI.LO 1 1 0 0 0 IM IM IM IM IM IM IM IM RD RD RD 

GET.FLAG 1 1 0 0 1 0 0 X X X X X X RD RD RD 
GET.SPR1 1 1 0 0 1 0 1 X X X X X X RD RD RD 
GET.SPR2 1 1 0 0 1 1 0 X X X X X X RD RD RD 
GET.EXR 1 1 0 0 1 1 1 X X X X X X RD RD RD 

GET.WAIT_REG 1 1 0 1 0 0 0 X X X X X X RD RD RD 
GET.TAR 1 1 0 1 0 0 1 X X X X X X RD RD RD 
GET.WS 1 1 0 1 0 1 0 X X X X X X RD RD RD 
GET.INTR 1 1 0 1 0 1 1 X X X X X X RD RD RD 
PUT.FLAG 1 1 0 1 1 0 0 RA RA RA X X X X X X 
PUT.SPR1 1 1 0 1 1 0 1 RA RA RA X X X X X X 
PUT.DEBUG 1 1 0 1 1 1 0 X X X X X IM X X X 

PUT.INTRMASK 1 1 0 1 1 1 1 X X X X X IM X X X 
ADDI.# 1 1 1 0 0 0 0/1 RA RA RA IM IM IM RD RD RD 
SUBI.# 1 1 1 0 0 1 0/1 RA RA RA IM IM IM RD RD RD 

GET.THREAD 1 1 1 0 1 0 0 X X X X X X RD RD RD 
SWFT 1 1 1 1 0 0 0 RA RA RA RB RB RB RD RD RD 
SWSG 1 1 1 1 0 0 1 RA RA RA RB RB RB RD RD RD 
SWSGI 1 1 1 1 0 1 0 RA RA RA RB RB RB RD RD RD 
SWSGD 1 1 1 1 0 1 1 RA RA RA RB RB RB RD RD RD 
NOP 1 1 1 1 1 X X X X X X X X X X X 
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Interrupts 
 
Figure 16 describes the interrupt interface between the processor and the device that 
interrupts. An interrupt cannot be processed if the thread is inactive or if the thread is 
waiting to be synchronized. Once the processor latches the address and acknowledges the 
interrupt, the following events take place: 
 

1. Complete the current instruction. 
2. Saves the processor state (PC+2, condition codes and R0 thru R7) 
3. Service the interrupt 
4. Restore processor state 
5. Continue with the execution of the current program 

 
If an interrupt is being serviced, another interrupt will not be acknowledged. Although an 
exception can occur within interrupt, an interrupt will not be serviced when an exception 
is being handled. An interrupt is not acknowledged when the current instruction is a 
jump. 
 

 
Figure 16: Interrupt interface 

 
The timing relation between the processor and the device interrupting the thread is show 
in Figure 17. 
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Figure 17: Interrupt timing 
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Exceptions 
 
Exceptions are internal to the processor. Exceptions can be caused due to: 

- Illegal instruction 
- Unaligned address for load 
- Starting hardware thread that is already busy 
- Killing a thread that is waiting to be synchronized 
- Store to a location from 0000 – 7FFF (Program Memory) 

 
The exception raised in one thread usually affects only that thread, all other threads will 
continue to run without any issues. The instruction is not committed into the register file. 
The thread state (PC, condition codes, instruction and R0 through R7) is saved in a 
predefined location. An exception routine is serviced before the thread is killed. The 
thread can be restarted only by system reset or through some other thread. Exceptions 
mask interrupts, implying that an interrupt will not be serviced if an exception is being 
handled. 
 
ILLEGAL_INSTRUCTION  
JMP.SPR1 when not servicing an interrupt 
Unrecognized opcode 
 
UNALIGNED_ADDRESS  
Loads and stores from an even address 
Jump to an even address 
 
ILLEGAL_ADDRESS 
Jump to data memory 
Store to program memory 
 
ILLEGAL_INIT 
Start a new thread that is already active 
 
ILLEGAL_WAIT 
Waiting for a thread which is already dead 
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The following table lists the exception codes and their names… 
 

Table 7: EXR definition 

BIT NUMBERS IN EXR EXCEPTION 
0 ILLEGAL_INSTRUCTION 
1 UNALIGNED_ADDRESS 
2 ILLEGAL_ADDRESS 
3 INIT_THREAD 
4 ILLEGAL_WAIT 

5-15 Reserved  
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Writing to Output Ports 
 
The write instruction has the following semantic… 
 
WRITE IMM3, $CB, $RD 
 
The contents of R2 are written into the port number that is mapped by IMM3. If the write 
is successful, $CB in the flag register is set. If the write to the port is unsuccessful, a 
value 0 is written into the location in the flag register pointed by $CB. Table 8 indicates 
the mapping of the output port number to the IMM3 value.  
 

Table 8: Port mapping 

IMM3 PORT # 
000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

 
Figure 18 shows the output control interface of WIMP and the devices. Each port in the 
output controller is associated with an output queue. Each queue is 256 deep and 16-bits 
wide. If the queue associated with the port to be written into is not full, the output control 
writes the data into the queue and returns a 1 in the same clock cycle. On the other hand, 
if the queue is full, the output control prevents the writing into the queue and returns the 
status as 0. The timing relationship is shown in Figure 19. A similar protocol is followed 
on the device side where a read command is expected from the output device when the 
queue is not empty.  
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Output Control

Dout Empty Read

Port 1 Port 8

Dout Empty Read

Processor Interface

Port ID Din Status Write

 
Figure 18: Output control interface 

 
 

Value

Clock

Write

Port # XX XX

Status

Processor Issues a Write 
Signal to Output Control

Output Control Issues Status 
The Same Cycle

ValueDin XX XX

 
Figure 19: Timing relation between WIMP core and output control 
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Reading from Input Ports 
 
The read instruction has the following semantics… 
READ IMM3, $CB, $RD 
 
The contents from port specified by IMM3 are copied into RD. If the read operation from 
the port was successful, a 1 is written into $CB; otherwise, a 0 is written into $CB. The 
processor can read from 8 different ports specified by the IMM3 value. Table 9 shows the 
mapping of the input ports to the IMM3 value.  
 

Table 9: Port mapping 

IMM3 PORT # 
000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

 
The read instruction communicates with the input control in execute 1 stage of the 
pipeline. The input control can interface 8 input ports to the processor core. Each port is 
associated with an input queue. An input device connected to an input port writes into the 
FIFO as long it is not full. On the other hand, the processor can read from an input port 
only when the queue is not empty. The status signal returns a 0 when the processor 
attempts to read from an empty input queue and a 1 when the queue is not empty. Figure 
20 shows the Input Control interface on the processor core side and the input device side. 
 

 
Figure 20: Input control interface 
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Initializing a New Thread 
 

- During system reset 
At reset, only hardware thread 1 is active. This is the default thread and is 
hardwired into the system.  

- Normal working  
During normal working, a thread can initiate a new hardware thread with the INIT 
instruction.  

The semantics of the INIT instructions are as follows… 
 

INIT $RA, IMM2 
 

Example, 
Thread 2 has the instruction, 

 
INIT $5, 0x03 

 
The processor checks if thread 3 is already active. If so, an INIT THREAD EXCEPTION 
occurs in thread 2 while thread 3 continues as is. If thread 3 is not active, the PC for 
thread 3 is loaded with the contents of R5. Thread 3 will start in the next machine cycle. 
Once thread 3 is active, it can be killed only by the KILL instruction present in its 
instruction stream. Thread 2 will have no more control over thread 3.  
 
If all the threads are killed, the processor halts. The processor can be activated only with 
the system reset. There should be at least one active thread at all times.  
 
The INIT instruction takes any where from 4 to 7 clock cycles to come into effect. In 
other words, the new thread is brought into effect in the next machine cycle. The 
following example makes the timing of the INIT instruction clear. 
 
Consider the following instruction in the memory 
 

Table 10: Initializing Threads 
T1 T2 T3 T4 

ADDR INSTR ADDR INSTR ADDR INSTR ADDR INSTR 
Z INIT T2, Y x x x x x x 

Z+2 ADD Y LOAD x x x x 
x : don’t care 
 
Table 10 shows thread 1 initialing a new thread T2 to start from location Y. The 
instruction INIT instruction is present in the location Z. The processor guarantees that the 
instruction in thread T2 (which is LOAD) WILL be executed after the instruction in Z+2 
(which is an ADD), implying that the new thread will always start in the next machine 
cycle. 
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Thread Synchronization 
 
The processor supports a very simple form of a thread synchronization using the WAIT 
instruction. The semantics of the WAIT instruction are as follows: 
 
WAIT IMM[3], IMM[2], IMM[1], IMM[0], S10 
 
IMM[0]  Thread 0 
IMM[1]  Thread 1 
IMM[2]  Thread 2 
IMM[3]  Thread 3 
 
Say the instruction in thread 1 is  
WAIT 1, 0, 1, 0, 2 
 
When the processor comes across this instruction, it will stall thread 1 till it comes across 
a similar instruction in thread 3 that points to the synchronization point 2.  
 

 
Figure 21: Thread synchronization using barrier 

 
It wouldn’t matter if thread 3 had reached the barrier point before. Thread 3 will stall 
until thread 1 reaches the same instruction. Both the WAIT instructions can be in 
different places in the memory. An ILLEGAL_WAIT exception will occur in thread-n if 
thread-n is waiting for thread-m and thread-m is killed. 
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Rules to be followed for wait instruction 
  - The thread that reaches the barrier first should start first 
 - A thread cannot wait for a dead thread 
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Video RAM and the VGA 
 
The video RAM has a byte for every pixel on the VGA. The byte corresponds to the grey 
scale value of the pixel that needs to be displayed by the VGA. Figure 22 shows the 
position on the VGA corresponding to a location in the video RAM.  
 

VGA

Video RAM, Segment 1

Video RAM, Segment 2

0x0000

0xFFFF
0x0000

0xDFFF

 
Figure 22: Video RAM and the VGA 

 
Writing into the Video RAM is decoupled from refreshing aspect of the VGA. 
Applications can write into the Video RAM using the SWSG, SWSGI and SWSGD 
instructions. 
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