

Wisconsin’s Interleaved Multithreaded Processor

Architecture Manual

Bryan Berns
Jacob Petranak
Jordan Wenner

Parikshit Narkhede
Suman Mamidi

Architecture Manual

 2

Table of Contents

Introduction.. 3

WIMP Architecture.. 5

Register Map ... 5

Memory Map... 11

Instruction Set .. 17

Instruction Encoding ... 37

Interrupts .. 39

Exceptions ... 41

Writing to Output Ports .. 43

Reading from Input Ports ... 45

Initializing a New Thread.. 46

Thread Synchronization .. 47

Video RAM and the VGA... 49

References ... 50

Architecture Manual

 3

Introduction

WIMP is an interleaved multi-threaded processor designed to exploit the data parallelism
inherent in many multi-media DSP applications. It handles four physical threads that are
interleaved to share the hardware resources. Threads are processed in a round robin
scheme, and each thread is given a single cycle for processing.

Figure 1: Round robin scheme for processing threads

The time elapsed before the same thread is processed again is called a machine cycle. In
the case show in Figure 1, a machine cycle is equal to 4 clock cycles.

In addition, an instruction in each thread requires four clock cycles for completion as
shown in Figure 2. The time elapsed from the instruction fetch to instruction commit for
each thread constitutes a single thread cycle.

Figure 2: A single thread cycle

Figure 3 shows when each thread is processed and what stages each thread passes
through. Having the number of hardware threads equal or greater than the latency
eliminates any forms of data dependency, hence ensuring no stalls. This architecture is
feasible when the target application set possesses enough parallelism to fill up the four
physical threads. The round robin scheme ensures that all resources perform useful work
as long as all the hardware threads are active.

Architecture Manual

 4

M
achine C

ycle

Figure 3: Interleaved multithreading

At reset, only thread 0 is active while all other threads are dead. At run time, any active
thread can activate another dead thread. If the thread to be activated is already running,
an exception occurs in the thread that is trying to activate the new thread. A thread cannot
kill another thread; a thread can only kill itself. The behavior is undefined if two thread
try to active a new thread in the same machine cycle.

Architecture Manual

 5

WIMP Architecture

 Register Map

This section describes the register map of WIMP as shown in Figure 4, Figure 5 and
Figure 6.

Register file

Architecturally, WIMP has four register files, one for every physical thread. The four
register files are mutually exclusive, but all have the same properties. Every register file
has two write ports and three read ports. They are 8 deep and 16-bits wide. During
normal operations, R0 register is always 0 and cannot be written into. A write into R0
does not generate any exceptions. When an exception occurs due to some other
instruction, the processor enters debug mode and R0 is writeable like any other general-
purpose register. When an interrupt occurs, R0 is writeable only when the processor state
is being saved or restored. R0 is zero and non-writable when the interrupt is being
serviced by the ISR (Interrupt Service Routine).

Figure 4: Register map

Program Counter

Every thread has an independent program counter that is 16-bits wide. At reset, all
program counters fetch from address 0x0000; however, only the program counter for
thread 0 increments since only thread 0 is active at system reset. The program counter is
incremented by 2 to fetch the new instructions.

Architecture Manual

 6

Interrupt Register

A device interrupting the processor provides a starting address of the ISR on the interrupt
bus. This address is latched into the interrupt register when the interrupt is acknowledged.
The interrupt register is accessed by get.intr instruction that copies the contents of the
interrupt register into the register file. WIMP has four such interrupt registers for each
thread.

Exception Register

The exception register is a 16-bit register that stores the exception type when an
exception occurs. Each bit of an exception register is assigned to an exception type.
Table 1 shows definitions for each bit in the exception register. Every thread has its own
exception register, which is mutually exclusive with the other exception registers.

Table 1: EXR Definition

BIT NUMBERS IN EXR EXCEPTION
0 ILLEGAL_INSTRUCTION
1 UNALIGNED_ADDRESS
2 ILLEGAL_ADDRESS
3 INIT_THREAD
4 ILLEGAL_WAIT

5-15 Reserved

Special Register 1

SPR1 is a special register that records the address of the next instruction when an
interrupt occurs. This is the return address of the program once an interrupt is serviced.
The special register 1 is read by the get.spr1 instruction that copies the contents of the
special register into the register file. Every thread has access to its own SPR1 that is 16-
bits wide.

Special Register 2

SPR2 is a special register that records the address of the current instruction when an
exception occurs. This register can be accessed by the get.spr2 instruction that copies the
contents of the SPR2 into the register file. Every thread has its own SPR2 that is 16-bits
wide.

Architecture Manual

 7

Figure 5: Register map (flag, debug, intrmask)

Flag Register

WIMP employs a limited form of predication applicable to the jump instructions. The 8-
bit flag register is written by arithmetic instructions and compare instructions, and is read
by the jump instructions. WIMP provides a flag register for every thread. In each of the
flag registers, bit(0) is always 1. A write into the flag(0) does not cause any exceptions.
The compare instructions can explicitly set the bits flag(1) through flag(7). Some
arithmetic instructions listed in Table 2 implicitly set flag(7) and flag(6) when an
overflow or underflow is detected.

Examples explaining the behavior of the flag register:

cmp.ne.16 $1, $2, 3 # compare the contents of

$1 and $2. If not equal, set flag(3) else reset flag(3)

cmp.ne.8 $1, $2, 3 # compare the contents of

$1 (lower byte) and $2 (lower byte) If not equal, set flag(3) else
reset flag(3)
$1 (higher byte) and $2 (higher byte) If not equal, set flag(4) else
reset flag(4)

add.16 $1, $2, $3 # Add $1 and $2 and store in $3
 If result is > 216-1, set flag(6) else reset flag(6)

add.8 $1, $2, $3 # Add $1 (lower byte) and $2 (lower byte) and store in $3 (lower

byte)
 If result is > 28-1, set flag(6) else reset flag(6)

Add $1 (higher byte) and $2 (higher byte) and store in $3 (higher
byte)

 If result is > 28-1, set flag(7) else reset flag(7)

Architecture Manual

 8

Table 2: Arithmetic instructions effecting the flag register

ARITHMETIC INSTRUCTION WHEN
ADD.8 Result > 28 - 1
ADD.16 Result > 216 - 1
ADDI.8 Result > 28 – 1
ADDI.16 Result > 216 – 1

SUB.# Result < 0
SUBI.# Result < 0
AVG.# Reset flags

SAVG.# Result < 0
MUL Reset flags
MAC Result > 216 - 1

Debug

The debug register is a one-bit register available independently for every thread. When
the debug register is 1, register R0 of the register file is writable. When the debug register
is 0, register R0 is not writable. The debug register can be explicitly set and reset using
the set.debug instruction. In addition, debug is implicitly set when an interrupt or an
exception occurs.

Interrupt Mask

The interrupt mask is one-bit register that cannot be accessed by any instruction. There is
an interrupt mask register for every thread. External interrupts are not serviced when the
interrupt mask is set. The interrupt mask is set implicitly when an interrupt or an
exception occurs. This allows an exception to occur when an interrupt occurs, but not the
other way round. The interrupt mask is implicitly reset after the system completes
servicing the interrupt, restores the processor state, and returns to normal execution of the
program.

Architecture Manual

 9

Thread Active
Register

TAR

4 bits Wide

4 bits Wide

4 - Deep

S1S0 = 00

S1S0 = 01

S1S0 = 10

S1S0 = 11

T0T1T2T3

3 bits Wide

4 - Deep

S1

T3

T2

T1

T0

Wait Reg

S0

Wait State

Figure 6: Register map (wait reg, wait state, and TAR)

Thread Active Register

The Thread Active Register (TAR) specifies which threads are active and which are dead.
The bit corresponding to a thread is set when ever a thread is activated by the init
instruction. A bit in TAR is reset whenever a threads corresponding bit dies, either due to
an exception or a kill instruction. Table 3 shows the relation between the bits in the
TAR and the physical threads.

 Table 3: Relation between bits in TAR and physical threads

Bit Thread
TAR[0] Thread 0
TAR[1] Thread 1
TAR[2] Thread 2
TAR[3] Thread 3

Wait Register

The wait register and the wait state work together to implement thread synchronization.
The wait register is 4 deep; where each row corresponds to a synchronization point.
Every row is 4-bits wide, corresponding to thread 0 through thread 3. The wait register is
primarily addressed by the synchronizing point. The wait register is modified by wait
instructions. The wait register can be read by the get.wait_reg instruction that copies the
contents of the wait register into the register file.

Architecture Manual

 10

Wait State

The wait state register is four deep; where each row corresponds to a thread. Every row
is three bits wide. The first bit (ws) indicates if the thread is waiting to be synchronized.
If so, the next two bits, S0 and S1, indicate the synchronizing point in the wait register that
the thread is waiting on. The wait state is modified by the wait instruction and can be
read using the get.ws instruction that copies the wait state register into the register file.

Architecture Manual

 11

 Memory Map

WIMP instructions address three sections of memory, which are: Instruction Memory,
Data Memory and Video RAM. The instruction memory is accessed by the PC (program
counter), loads, and stores; while only loads and stores access data memory. The Video
RAM is a write only memory, accessible only to some special store instructions.

Figure 7: WIMP Memory map

WIMP has following restrictions that on the memory:

• 0x0000 – 0x3FFF cannot be written into (an exception will be
generated otherwise)

• 0x4000 – 0x7FFF can be written into only by instructions that are
present in the range 0x0000 – 0x3FFF (an exception will be generated
otherwise)

• 0x8000 – 0xFFFF can be written and read by any instruction
• Video RAM is write only; accessed by special instructions only

Architecture Manual

 12

The following table shows the memory map of the WIMP system.

Table 4: WIMP memory map

Table 4.1: WIMP Memory
Range (Hex) Map

0000 – 7FFF Program Memory
8000 – FFFF Data Memory

Table 4.2: Program Memory

Range (Hex) Map
0000 – 03FF Thread 0 System Memory
0400 – 07FF Thread 1 System Memory
0800 – 0BFF Thread 2 System Memory
0C00 – 0FFF Thread 3 System Memory
1000 – 3FFF Operating System Memory
4000 – 7FFF User Program Memory

Table 4.3: Thread0 System Memory
Range (Hex) Map

0000 – 000F Reserved
0010 – 00FF Exception Handler
0110 – 01FF Interrupt Handler – Init
0200 – 02FF Interrupt Handler – Restore

Table 4.4: Thread 1 System Memory
Range (Hex) Map

0400 – 040F Reserved
0410 – 04FF Exception Handler
0500 – 05FF Interrupt Handler – Init
0600 – 06FF Interrupt Handler – Restore

Table 4.5: Thread 2 System Memory
Range (Hex) Map

0800 – 080F Reserved
0810 – 08FF Exception Handler
0900 – 09FF Interrupt Handler – Init
0A00 – 0AFF Interrupt Handler – Restore

Table 4.6: Thread 3 System Memory
Range (Hex) Map

0C00 – 0C0F Reserved
0C10 – 0CFF Exception Handler
0D00 – 0DFF Interrupt Handler – Init
0E00 – 0EFF Interrupt Handler – Restore

Architecture Manual

 13

Table 4.7: Operating System Memory
Range (Hex) Map

1000 – 12FF Monitor program
1300 – 13FF Keyboard driver (ISR)
1400 – 14FF SPAT driver
1500 – 2FFF OS command routines

Table 4.8: Data Memory
Range (Hex) Map

8000 – 8FFF OS Data Memory
9000 – FFFF User Data Memory

Table 4.9: OS Data Memory
Range (Hex) Map

8000 – 803F Keyboard buffer
8040 – 804F Thread 0 command area
8050 – 805F Thread 1 command area
8060 – 806F Thread 2 command area
8070 – 807F Thread 3 command area
8080 – 80FF Thread 0 write buffer
8100 – 817F Thread 1 write buffer
8180 – 81FF Thread 2 write buffer
8200 – 827F Thread 3 write buffer
8280 – 829F Thread 0 dump memory
82A0 – 82BF Thread 1 dump memory
82C0 – 82DF Thread 2 dump memory
82E0 – 82FF Thread 3 dump memory
8300 – 83FF Thread 0 frame storage
8400 – 84FF Thread 1 frame storage
8500 – 85FF Thread 2 frame storage
8600 – 86FF Thread 3 frame storage
8700 – 8FFF System variable storage

Table 4.10: Keyboard Buffer
Range (Hex) Map

8000 – 8001 Buffer ready
8002 – 803F Buffer area

Table 4.11: Thread 0 command area
Range (Hex) Map

8040 – 8041 Command
8042 – 8043 Status
8044 – 8045 Parameter 1
8046 – 8047 Parameter 2

Architecture Manual

 14

8048 – 8049 Parameter 3

Table 4.12: Thread 1 command area
Range (Hex) Map

8050 – 8051 Command
8052 – 8053 Status
8054 – 8055 Parameter 1
8056 – 8057 Parameter 2
8058 – 8059 Parameter 3

Table 4.13: Thread 2 command area
Range (Hex) Map

8060 – 8061 Command
8062 – 8063 Status
8064 – 8065 Parameter 1
8066 – 8067 Parameter 2
8068 – 8069 Parameter 3

Table 4.14: Thread 3 command area
Range (Hex) Map

8070 – 8071 Command
8072 – 8073 Status
8074 – 8075 Parameter 1
8076 – 8077 Parameter 2
8078 – 8079 Parameter 3

Table 4.15: Thread 0 Write Buffer
Range (Hex) Map

8080 – 8081 Buffer ready
8082 – 80FF Buffer area

Table 4.16: Thread 1 Write Buffer
Range (Hex) Map

8100 – 8101 Buffer ready
8102 – 80FF Buffer area

Table 4.17: Thread 2 Write Buffer
Range (Hex) Map

8180 – 8181 Buffer ready
8182 – 81FF Buffer area

Table 4.18: Thread 3 Write Buffer
Range (Hex) Map

8200 – 8201 Buffer ready
8202 – 82FF Buffer area

Architecture Manual

 15

Table 4.19: Thread 0 Dump Memory
Range (Hex) Map

8280 – 8281 PC/PC+2
8282 Predicate register
8284 – 8285 EXR
8286 – 8287 R1
8288 – 8289 R2
828A – 828B R3
828C – 828D R4
828E – 828F R5
8290 – 8291 R6
8292 – 8293 R7
8294 – 8295 WAIT_REG
8296 – 8297 TAR
8298 – 8299 Thread id

Table 4.20: Thread 1 Dump Memory
Range (Hex) Map

82A0 – 82A1 PC/PC+2
82A2 Predicate register
82A4 – 82A5 EXR
82A6 – 82A7 R1
82A8 – 82A9 R2
82AA – 82AB R3
82AC – 82AD R4
82AE – 82AF R5
82B0 – 82B1 R6
82B2 – 82B3 R7
82B4 – 82B5 WAIT_REG
82B6 – 82B7 TAR
82B8 – 82B9 Thread id

Table 4.21: Thread 2 Dump Memory
Range (Hex) Map

82C0 – 82C1 PC/PC+2
82C2 Predicate register
82C4 – 82C5 EXR
82C6 – 82C7 R1
82C8 – 82C9 R2
82CA – 82CB R3
82CC – 82CD R4
82CE – 82CF R5
82D0 – 82D1 R6
82D2 – 82D3 R7
82D4 – 82D5 WAIT_REG

Architecture Manual

 16

82D6 – 82D7 TAR
82D8 – 82D9 Thread id

Table 4.22: Thread 3 Dump Memory
Range (Hex) Map

82E0 – 82E1 PC/PC+2
82E2 Predicate register
82E4 – 82E5 EXR
82E6 – 82E7 R1
82E8 – 82E9 R2
82EA – 82EB R3
82EC – 82ED R4
82EE – 82EF R5
82F0 – 82F1 R6
82F2 – 82F3 R7
82F4 – 82F5 WAIT_REG
82F6 – 82F7 TAR
82F8 – 82F9 Thread id

Architecture Manual

 17

 Instruction Set

The processor incorporates a small subword parallel ISA aimed at multimedia DSP
applications. Table 5 lists all the instructions present in the WIMP’s ISA.

Table 5: WIMP instructions

Instruction Function

ADD.# RD RA + RB
SUB.# RD RA - RB
AVG.# RD (RA + RB) >> 1
SAVG.# RD (RA - RB) >> 1
RSL.# RD RA >> RB
RSA.# RD {RA[MSB,...],RA} >> RB
LSL.# RD RA << RB
ROT.# RD ROTATE_LEFT(RA by RB)
CMP.EQ.# FLAG[CB] (RA == RB) ? 1 : 0
CMP.GT.# FLAG[CB] (RA > RB) ? 1 : 0
CMP.LT.# FLAG[CB] (RA < RB) ? 1 : 0
CMP.NE.# FLAG[CB] (RA != RB) ? 1 : 0
CMP.GE.# FLAG[CB] (RA >= RB) ? 1 : 0
CMP.LE.# FLAG[CB] (RA <= RB) ? 1 : 0
MAC.LO RD[15:0] RD[15:0] + RA[7:0] x RB[7:0]
MAC.HI RD[15:0] RD[15:0] + RA[15:8] x RB[15:8]
MUL.LO RD[15:0] RA[7:0] x RB[7:0]
MUL.HI RD[15:0] RA[15:8] x RB[15:8]
MIX.LO INTERLEAVE
MIX.HI INTERLEAVE
MUX.LO INTERLEAVE
MUX.HI INTERLEAVE
AND RD RA AND RB
OR RD RA OR RB
XOR RD RA XOR RB
NOT RD NOT RA

Architecture Manual

 18

COPY.LO RD[7:0] RA[7:0]
COPY.HI RD[15:8] RA[15:8]
LW RD M[RA]
LWI RD M[RA], RA RA + 2
LWD RD M[RA], RA RA – 2
SW M[RB] RA
SWI M[RB] RA, RA RA + 2
SWD M[RB] RA, RA RA - 2
READ READ DATA FROM PORT: IM
WRITE OUTPUT RB TO PORT: IM
WAIT SPECIFY SCHRONIZED THREADS
KILL KILL CURRENTLY EXECUTING THREAD
INIT INITIALIZE THREAD #IM AT MEMORY RA
JMPR PC RA
JALR R7 PC, PC RA
JMPI PC PC + IMM
JALI R7 PC, PC PC + IMM
LI.HI LOAD IMM INTO RD[15:8]
LI.LO LOAD IMM INTO RD[7:0]
JMP.SPR1 PC SPR1
GET.FLAG RD[7:0] FLAG, RD[15:8] Cleared
GET.SPR1 RD SPR1
GET.SPR2 RD SPR2
GET.EXR RD EXR, Clear EXR
GET.WAIT_REG RD[7:0] WAIT_REG, RD[15:8] Cleared
GET.TAR RD[3:0] TAR, RD[15:4] Cleared
GET.WS RD[3:0] WS, RD[15:4] Cleared
GET.INTR RD[3:0] INTR Register
GET.THREAD RD[1:0] Thread ID
PUT.FLAG FLAG RA[7:0]
PUT.SPR1 SPR1 RA
PUT.DEBUG PUT IMM INTO DEBUG

Architecture Manual

 19

PUT.INTRMASK Masks/Unmasks the interrupt
SWFT M[RB] RA, Store RA into an output port
SWSG Store into Video RAM
SWSGI Store into Video RAM, Increment address by 1
SWSGD Store into Video RAM, Decrement address by 1
NOP DOES ABSOLUTELY NOTHING
Notes: # can take either 8 or 16 to indicate the subword size. Example,
ADD.8 will add the lower and higher bytes of RA and RB where as ADD.16
considers RA and RB as single 16-bit words.

Architecture Manual

 20

1. ADD.#

ADD.8 $RA, $RB, $RD
ADD.16 $RA, $RB, $RD

The contents of register RA and register RB are added and written into register RD. If the
16-bit addition results in a value greater than 216-1, the result wraps around and flag(6) is
set, other wise flag(6) is reset. If any of the two 8-bit additions result in a value greater
than 28-1, the corresponding numbers wrap around; flag(6) is set if the lower byte
addition overflows, reset otherwise. Flag(7) is set if the higher byte addition overflows,
reset otherwise.

2. SUB.#

SUB.8 $RA, $RB, $RD
SUB.16 $RA, $RB, $RD

The contents of register RB are subtracted from the contents of register RA and written
into register RD. If the 16-bit subtraction results in a value less than 0, the result wraps
around and flag(6) is set, otherwise flag(6) is reset. If any of the two 8-bit subtractions
result in a value less than 0, the corresponding numbers wrap around. Flag(6) is set if the
lower byte subtraction underflows, reset otherwise; flag(7) is set if the higher byte
subtraction underflows, reset otherwise.

3. AVG.#

AVG.8 $RA, $RB, $RD
AVG.16 $RA, $RB, $RD

The contents of register RA and register RB are added; the result is right shifted and
written into register RD. Flag(6) is cleared if the instruction is AVG.16. Flag(7) and
flag(6) are cleared if the instruction is AVG.8

4. SAVG.#

SAVG.8 $RA, $RB, $RD
SAVG.16 $RA, $RB, $RD

The contents of register RB are subtracted from the contents of register RA; the result is
right shifted and written into register RD. If the 16-bit SAVG results in a value less than
0, the result wraps around and flag(6) is set, other wise flag(6) is reset. If any of the two
8-bit additions result in a value less than 0, then the corresponding numbers wrap around.
Flag(6) is set if the lower byte SAVG underflows, reset otherwise; flag(7) is set if the
higher byte SAVG underflows, reset otherwise.

Architecture Manual

 21

5. RSL.#

RSL.8 $RA, $RB, $RD
RSL.16 $RA, $RB, $RD

The contents of register RA are right shifted with zero padding by the amount indicated
in the lower order bits of register RB and the result is written into register RD. The flag
register is unaffected.

6. RSA.#

RSA.8 $RA, $RB, $RD
RSA.16 $RA, $RB, $RD

The contents of register RA are right shifted with MSB extension by the amount
indicated in the lower order bits of register RB and the result is written into register RD.
The flag register is unaffected.

7. LSL.#

LSL.8 $RA, $RB, $RD
LSL.16 $RA, $RB, $RD

The contents of register RA are left shifted with zero padding by the amount indicated in
the lower order bits of register RB and the result is written into register RD. The flag
register is unaffected.

8. ROT.#

ROT.8 $RA, $RB, $RD
ROT.16 $RA, $RB, $RD

The contents of register RA are rotated left by the amount indicated in the lower order
bits of register RB and the result is written into register RD. The flag register is
unaffected.

9. CMP.EQ.#

CMP.EQ.8 $RA, $RB, $CB
CMP.EQ.16 $RA, $RB, $CB

Architecture Manual

 22

The contents of register RA and register RB are compared for equality. If the result is
true, the predicate bit indicated by $CB is set to 1, otherwise set to 0. The contents of RA
and RB are unaffected.

10. CMP.GT.#

CMP.GT.8 $RA, $RB, $CB
CMP.GT.16 $RA, $RB, $CB

The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register
RA are greater than the contents of register RB, otherwise set to 0.

11. CMP.LT.#

CMP.LT.8 $RA, $RB, $CB
CMP.LT.16 $RA, $RB, $CB

The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register
RA are less than the contents of register RB, otherwise set to 0.

12. CMP.NE.#

CMP.NE.8 $RA, $RB, $CB
CMP.NE.16 $RA, $RB, $CB

The contents of register RA and register RB are compared for inequality. If the result is
true, the predicate bit indicated by $CB is set to 1, otherwise set to 0. The contents of RA
and RB are unaffected.

13. CMP.GE.#

CMP.GE.8 $RA, $RB, $CB
CMP.GE.16 $RA, $RB, $CB

The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register
RA are greater than or equal to the contents of register RB, otherwise set to 0.

14. CMP.LE.#

CMP.LE.8 $RA, $RB, $CB
CMP.LE.16 $RA, $RB, $CB

The predicate bit indicated by $CB in the instruction is set to 1 if the contents of register
RA are less than or equal to the contents of register RB, otherwise set to 0.

Architecture Manual

 23

15. MAC.LO

MAC.LO $RA, $RB, $RD
MAC.LO $RA, $RB, $RD

The lower bytes of register RA and RB are multiplied and added to the contents of RD.
The result is written back into RD. If the MAC results in a value greater than 216-1, the
result wraps around and flag(6) is set, otherwise flag(6) is reset.

16. MAC.HI

MAC.HI $RA, $RB, $RD
MAC.HI $RA, $RB, $RD

The higher bytes of register RA and RB are multiplied and added to the contents of RD.
The result is written back into RD. If the MAC results in a value greater than 216-1, the
result wraps around and flag(6) is set, otherwise flag(6) is reset.

17. MUL.LO

MUL.LO $RA, $RB, $RD
MUL.LO $RA, $RB, $RD

The lower bytes of register RA and RB are multiplied and written into RD. Flag(6) is
reset at the end of this instruction.

18. MUL.HI

MUL.HI $RA, $RB, $RD
MUL.HI $RA, $RB, $RD

The higher bytes of register RA and RB are multiplied and written back into RD. Flag(6)
is reset at the end of this instruction.

19. MIX.LO

MIX.LO $RA, $RB, $RD

The lower byte of register RA and the higher byte in register RB are interleaved and
written into RD. The flag register is unaffected.

Architecture Manual

 24

RA

RB

RD

MIX.LO

15…………..8 7…………….0

Figure 8: MIX.LO

20. MIX.HI

MIX.HI $RA, $RB, $RD

The higher byte of register RA and the lower byte of register RB are interleaved and
written into RD. The flag register is unaffected.

RA

RB

RD

MIX.HI

15…………..8 7…………….0

Figure 9: MIX.HI

21. MUX.LO

MUX.LO $RA, $RB, $RD

The lower byte of register RA and the higher byte in register RB are interleaved and
swapped and then written into RD. The flag register is unaffected.

Architecture Manual

 25

RA

RB

RD

MUX.LO

15…………..8 7…………….0

Figure 10: MUX.LO

22. MUX.HI

MUX.HI $RA, $RB, $RD

The higher byte of register RA and the lower byte in register RB are interleaved and
swapped and then written into RD. The flag register is unaffected.

RA

RB

RD

MUX.HI

15…………..8 7…………….0

Figure 11: MUX.HI

23. AND

AND $RA, $RB, $RD

The contents of register RA and register RB are ANDed and written into register RD. The
flag register is unaffected.

Architecture Manual

 26

24. OR

AND $RA, $RB, $RD

The contents of register RA and register RB are ORed and written into register RD. The
flag register is unaffected.

25. XOR

XOR $RA, $RB, $RD

The contents of register RA and register RB are XORed and written into register RD. The
flag register is unaffected.

26. NOT

NOT $RA, $RD

The contents of register RA are complemented and written into register RD. The flag
register is unaffected.

27. COPY.LO

COPY.LO $RA, $RD

The lower byte of the register RA is copied to the lower and higher byte of the register
RD. The flag register is unaffected.

RA

RD

COPY.LO

15…………..8 7…………….0

Figure 12: COPY.LO

Architecture Manual

 27

28. COPY.HI

COPY.HI $RA, $RD

The higher byte of the register RA is copied to the lower and higher byte of the register
RD. The flag register is unaffected.

RA

RD

COPY.HI

15…………..8 7…………….0

Figure 13: COPY.HI

29. LW

LW $RA, $RD

The processor loads the register RD with the data present in the location pointed to by the
contents of register RA. If the memory address present in the register RA is not aligned to
words, an UNALIGNED_ADDRESS exception occurs.

30. LWI

LWI $RA, $RD

The processor loads the register RD with the data present in the location, which is pointed
to by the contents of register RA. If the memory address present in the register RA is not
aligned to words, an UNALIGNED_ADDRESS exception occurs. In addition, the
processor will increment the contents of RA by 2.

Architecture Manual

 28

31. LWD

LWD $RA, $RD

The processor loads the register RD with the data present in the location, which is pointed
to by the contents of register RA. If the memory address present in the register RA is not
aligned to words, an UNALIGNED_ADDRESS exception occurs. In addition, the
contents of RA are decremented by 2.

32. SW

SW $RA, $RB

The processor stores the contents of RB into the memory location specified by register
RA. If the memory address present in the register RA is not aligned to words, an
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or
program memory, an ILLEGAL_ADDRESS exception occurs.

33. SWI

SWI $RA, $RB

The processor stores the contents of RB into the memory location specified by register
RA. If the memory address present in the register RA is not aligned to words, an
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or
program memory, an ILLEGAL_ADDRESS exception occurs. In addition, the contents
of RA are incremented by 2.

34. SWD

SWD $RA, $RB

The processor stores the contents of RB into the memory location specified by register
RA. If the memory address present in the register RA is not aligned to words, an
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or
program memory, an ILLEGAL_ADDRESS exception occurs. In addition, the contents
of RA are decremented by 2.

35. LI.HI

LI.HI IMM8, $RD

The higher byte of the register RD is loaded with IMM8.

Architecture Manual

 29

36. LI.LO

LI.LO IMM8, $RD

The lower byte of the register RD is loaded with IMM8.

37. READ

READ IMM3, $CB, $RD

The thread reads the input port indicated by IMM3. If the READ is successful, the
predicate bit indicated by $CB is set and the value is written into RD. If the READ is
unsuccessful, RD is left untouched and predicate bit indicated by $CB cleared.

38. WRITE

WRITE IMM3, $CB, $RD

The thread writes the contents of RD into the port indicated by IMM3. If the WRITE is
successful, the predicate bit indicated by $CB is set, otherwise $CB is cleared.

39. WAIT

WAIT IMM[3], IMM[2], IMM[1], IMM[0], S10

The processor supports a very simple form of thread synchronization using the WAIT
instruction.

IMM[0] Thread 0
IMM[1] Thread 1
IMM[2] Thread 2
IMM[3] Thread 3

Say the instruction in thread 0 is
WAIT 1, 0, 1, 0, 0
When the processor comes across this instruction, it will stall thread 1 until it comes
across a similar instruction in thread 3 that points to the synchronization point 0.

Architecture Manual

 30

Figure 14: Illustrating thread synchronization

It wouldn’t matter if thread 3 had reached the barrier point before. Thread 3 will stall
until thread 1 reaches the same instruction. Both the WAIT instructions can be in
different places in the memory.

40. KILL

KILL

The KILL instruction unconditionally kills the hardware thread. The KILL instruction
does not have any parameters. A thread can be killed only from within itself using the
KILL instruction. Once the thread is killed, the PC does not increment and the hardware
thread will not respond to any interrupts. The thread can be brought up only from another
thread or system reset.

41. INIT

INIT $RA, IMM2

During normal working, a thread can initiate another hardware thread with the INIT
instruction.

Example,
Thread 2 has the instruction,

INIT R5, 3

Architecture Manual

 31

The processor checks if thread 3 is already active. If so, an INIT_THREAD exception
occurs in thread 2 while thread 3 continues as is. If thread 3 is not active, the PC for
thread 3 is loaded with the contents of R5. Thread 3 will start in the next machine cycle.
Once thread 3 is active, it can be killed only be the KILL instruction present in its
instruction stream. Thread 2 will have no more control over thread 3.

Initializing a thread comes into effect in the next machine cycle. During this period, if
another thread tries to initialize the same thread, the behavior is unpredictable.

If all the threads are killed, the processor halts. The processor can be activated only with
the system reset. There should be at least one active thread at all times.

42. JMPR

JMPR $RA, CB

The program control jumps to the location present in the register RA if the bit defined by
CB is 1, otherwise normal program execution proceeds. The jump is unconditional if CB
is specified to 0. If the contents of register RA are not word aligned, an
UNALIGNED_ADDRESS exception occurs. If an attempt is made to jump to the data
area of the memory, an ILLEGAL_ADDRESS exception occurs.

43. JALR
JALR $RA, CB

The program control jumps to the location present in the register RA if the bit defined by
CB is 1, otherwise normal program execution proceeds. The program counter + 2 is
stored in R7. The jump is unconditional if CB is specified to 0. If the contents of register
RA are not word aligned, an UNALIGNED_ADDRESS exception occurs. If an attempt
is made to jump to the data area of the memory, an ILLEGAL_ADDRESS exception
occurs.

44. JMPI

JMPI IMM8, CB

The program control jumps to the location indicated by the sum of sign-extended IMM8
and the PC if the bit defined by CB is 1, otherwise normal program execution proceeds.
The jump is unconditional if CB is specified to 0. If the contents of register RA are not
word aligned, an UNALIGNED_ADDRESS exception occurs. If an attempt is made to
jump to the data area of the memory, an ILLEGAL_ADDRESS exception occurs.

Architecture Manual

 32

45. JALI

JALI IMM8, CB

The program control jumps to the location indicated by the sum of sign-extended IMM8
and the PC if the bit defined by CB is 1, otherwise normal program execution proceeds.
The program counter + 2 is stored in R7. The jump is unconditional if CB is specified to
0. If the contents of register RA are not word aligned, an UNALIGNED_ADDRESS
exception occurs. If an attempt is made to jump to the data area of the memory, an
ILLEGAL_ADDRESS exception occurs.

46. GET.FLAG

GET.FLAG $RD

Copies the 8-bit flag register (predicate register) into the lower byte of register RD. The
higher byte of register RD is cleared.

47. GET.SPR1

GET.SPR1 $RD

Copies the SPR1 register (that holds the address to jump to after an interrupt is serviced)
into register RD.

48. GET.SPR2

GET.SPR2 $RD

Copies the contents of SPR2 register (that holds the address of the instruction which has
caused an exception) to the register indicated by RD.

49. GET.EXR

GET.EXR $RD

Copies the EXR register (that holds all the exceptions that have occurred for the
instruction) to register RD. In addition the EXR register is cleared.

50. GET.WAIT_REG

GET.WAIT_REG $RD

Architecture Manual

 33

Copies the 8-bit WAIT_REG register (synchronization register) into the lower byte of
register RD. The higher byte of register RD is cleared.

51. GET.TAR

GET.TAR $RD

Copies the 4-bit TAR register (thread active register) into the lower four bits of register
RD. The upper twelve bits of register RD are cleared.

52. GET.WS

GET.WS $RD

Copies the 4-bit WS register (holds which threads are currently waiting) into the lower
four bits of register RD. The upper twelve bits of register RD are cleared.

53. GET.INTR

GET.INTR $RD

Copies the contents of INTR_ADDR register (holds address to jump to when interrupt
occurs) to register RD.

54. GET.THREAD

GET.THREAD $RD

Gets the current thread id and places it in $RD. The upper fourteen bits of register RD are
cleared.

55. PUT.FLAG

PUT.FLAG $RA

Loads the flag register with the lower byte of register RA.

56. PUT.SPR1

PUT.SPR1 $RA

Loads the SPR1 register with the contents of register RA.

Architecture Manual

 34

57. PUT.DEBUG

PUT.DEBUG IMM1

Writes the value specified in the IMM field into the 1-bit DEBUG register. When the
IMM field is 1, R0 becomes writable. When the immediate field is 0, R0 is cleared and
cannot be written into.

58. PUT.INTRMASK

PUT.INTRMASK IMM1

Writes the specified value into the interrupt mask. If the IMM1 value is 1, the mask is set
at the end of the instruction. Interrupts will not be acknowledged till the interrupt mask is
cleared. If the IMM1 value is 0, the interrupt mask is cleared at the end of the instruction,
which allows interrupts to be acknowledged. Interrupts are not acknowledged when this
instruction is being executed, irrespective of whether the interrupt mask is being set or
reset.

59. JMP.SPR1

JMP.SPR1

Loads the PC with the contents of the SPR1 register. In addition, the intr_mask register
is cleared signifying that the interrupt has been serviced and the processor is ready to
accept another interrupt.

60. NOP

NOP

Does absolutely nothing

61. ADDI.#

ADD.8 $RA, IMM3, $RD
ADD.16 $RA, IMM3, $RD

The contents of register RA are added to 3-bit IMM3 and written into register RD. If the
16-bit addition results in a value greater than 216-1, the result wraps around and flag(6) is
set, otherwise flag(6) is reset. If any of the two 8-bit additions result in a value greater
than 28-1, then the corresponding numbers wrap around. Flag(6) is set if the lower byte

Architecture Manual

 35

addition overflows, reset otherwise; flag(7) is set if the higher byte addition overflows,
reset otherwise.

62. SUBI.#

SUBI.8 $RA, IMM3, $RD
SUBI.16 $RA, IMM3, $RD

3-bit IMM3 is subtracted from the contents of register RA and written into register RD. If
the 16-bit subtraction results in a value less than 0, the result wraps around and flag(6) is
set, otherwise flag(6) is reset. If any of the two 8-bit subtractions result in a value less
than 0, then the corresponding numbers wrap around. Flag(6) is set if the lower byte
subtraction underflows, reset otherwise; flag(7) is set if the higher byte subtraction
underflows, reset otherwise.

63. SWFT

SWFT $RA, $RB, $RD

The contents of register RB are stored into the address pointed by register RA.
Additionally, the contents of register RB are stored into the output port indicated by RD.
If the memory address present in the register RA is not aligned to words, an
UNALIGNED_ADDRESS exception occurs. If the address in RA points to the system or
program memory, an ILLEGAL_ADDRESS exception occurs. . If the write into the port
is successful, the predicate bit 6 is set, otherwise predicate bit 6 is cleared. The store is
unaffected by the status of the write into the output port.

64. SWSG

SWSG $RA, $RB, $RD

This special instruction allows writes into the video RAM. Concatenating the two lower
order bits of the contents of register RD and the contents of register RB compute the
effective address for the store. The contents of register RA are stored into this effective
address. The contents of register RD can be 1 or 2. The store is cancelled if RD is 0. No
exceptions are generated.

65. SWSGI

SWSGI $RA, $RB, $RD

This special instruction allows writes into the video RAM. Concatenating the two lower
order bits of the contents of register RD and the contents of register RB compute the
effective address for the store. The contents of register RA are stored into this effective

Architecture Manual

 36

address. The contents of register RD can be 1 or 2. The store is cancelled if RD is 0. No
exceptions are generated. Additionally, the contents of register RA are incremented by 1.

66. SWSGD

SWSGI $RA, $RB, $RD

This special instruction allows writes into the video RAM. Concatenating the two lower
order bits of the contents of register RD and the contents of register RB compute the
effective address for the store. The contents of register RA are stored into this effective
address. The contents of register RD can be 1 or 2. The store is cancelled if RD is 0. No
exceptions are generated. Additionally, the contents of register RA are decremented by 1.

67. SWAP

SWAP $RA, $RD

The lower byte and the higher byte of register RA and swapped and placed in RD.

RA

RD

SWAP

15…………..8 7…………….0

Figure 15: SWAP

Architecture Manual

 37

Instruction Encoding

Table 6 shows the bit encoding for all the instructions supported by WIMP. All
instructions have a 5-bit opcode. Instructions that do not have an 8-bit immediate field
have a 2-bit sub-op. The instructions shaded in yellow are system instructions that help in
interrupt and exception handling.

Table 6: WIMP instruction encoding

ADD.# 0 0 0 0 0 0 0/1 RA RA RA RB RB RB RD RD RD
SUB.# 0 0 0 0 0 1 0/1 RA RA RA RB RB RB RD RD RD
AVG.# 0 0 0 0 1 0 0/1 RA RA RA RB RB RB RD RD RD
SAVG.# 0 0 0 0 1 1 0/1 RA RA RA RB RB RB RD RD RD
RSL.# 0 0 0 1 0 X 0/1 RA RA RA RB RB RB RD RD RD
RSA.# 0 0 0 1 1 X 0/1 RA RA RA RB RB RB RD RD RD
LSL.# 0 0 1 0 0 X 0/1 RA RA RA RB RB RB RD RD RD
ROT.# 0 0 1 0 1 X 0/1 RA RA RA RB RB RB RD RD RD

CMP.EQ.# 0 0 1 1 0 0 0/1 RA RA RA RB RB RB CB CB CB
CMP.NE.# 0 0 1 1 0 1 0/1 RA RA RA RB RB RB CB CB CB
CMP.GT.# 0 0 1 1 1 0 0/1 RA RA RA RB RB RB CB CB CB
CMP.GE.# 0 0 1 1 1 1 0/1 RA RA RA RB RB RB CB CB CB
CMP.LT.# 0 1 0 0 0 0 0/1 RA RA RA RB RB RB CB CB CB
CMP.LE.# 0 1 0 0 0 1 0/1 RA RA RA RB RB RB CB CB CB
MAC.LO 0 1 0 0 1 X 0 RA RA RA RB RB RB RD RD RD
MAC.HI 0 1 0 0 1 X 1 RA RA RA RB RB RB RD RD RD
MUL.LO 0 1 0 1 0 X 0 RA RA RA RB RB RB RD RD RD
MUL.HI 0 1 0 1 0 X 1 RA RA RA RB RB RB RD RD RD
MIX.LO 0 1 0 1 1 X 0 RA RA RA RB RB RB RD RD RD
MIX.HI 0 1 0 1 1 X 1 RA RA RA RB RB RB RD RD RD
MUX.LO 0 1 1 0 0 X 0 RA RA RA RB RB RB RD RD RD
MUX.HI 0 1 1 0 0 X 1 RA RA RA RB RB RB RD RD RD
AND 0 1 1 0 1 0 0 RA RA RA RB RB RB RD RD RD
OR 0 1 1 0 1 0 1 RA RA RA RB RB RB RD RD RD
XOR 0 1 1 0 1 1 0 RA RA RA RB RB RB RD RD RD
NOT 0 1 1 0 1 1 1 RA RA RA X X X RD RD RD

COPY.LO 0 1 1 1 0 0 0 RA RA RA X X X RD RD RD
COPY.HI 0 1 1 1 0 0 1 RA RA RA X X X RD RD RD
SWAP 0 1 1 1 0 1 X RA RA RA X X X RD RD RD
LW 0 1 1 1 1 0 0 RA RA RA X X X RD RD RD
LWI 0 1 1 1 1 0 1 RA RA RA X X X RD RD RD
LWD 0 1 1 1 1 1 0 RA RA RA X X X RD RD RD
SW 1 0 0 0 0 0 0 RA RA RA RB RB RB X X X

Architecture Manual

 38

SWI 1 0 0 0 0 0 1 RA RA RA RB RB RB X X X
SWD 1 0 0 0 0 1 0 RA RA RA RB RB RB X X X
READ 1 0 0 0 1 X 0 IM IM IM CB CB CB RD RD RD
WRITE 1 0 0 0 1 X 1 IM IM IM CB CB CB RD RD RD
WAIT 1 0 0 1 0 0 0 IM IM IM IM S S X X X
KILL 1 0 0 1 0 0 1 X X X X X X X X X
INIT 1 0 0 1 0 1 0 RA RA RA X IM IM X X X
JMPR 1 0 0 1 1 X 0 RA RA RA X X X CB CB CB

JMP.SPR1 1 0 0 1 1 X 1 X X X X X X X X X
JALR 1 0 1 0 0 X X RA RA RA X X X CB CB CB
JMPI 1 0 1 0 1 IM IM IM IM IM IM IM IM CB CB CB
JALI 1 0 1 1 0 IM IM IM IM IM IM IM IM CB CB CB
LI.HI 1 0 1 1 1 IM IM IM IM IM IM IM IM RD RD RD
LI.LO 1 1 0 0 0 IM IM IM IM IM IM IM IM RD RD RD

GET.FLAG 1 1 0 0 1 0 0 X X X X X X RD RD RD
GET.SPR1 1 1 0 0 1 0 1 X X X X X X RD RD RD
GET.SPR2 1 1 0 0 1 1 0 X X X X X X RD RD RD
GET.EXR 1 1 0 0 1 1 1 X X X X X X RD RD RD

GET.WAIT_REG 1 1 0 1 0 0 0 X X X X X X RD RD RD
GET.TAR 1 1 0 1 0 0 1 X X X X X X RD RD RD
GET.WS 1 1 0 1 0 1 0 X X X X X X RD RD RD
GET.INTR 1 1 0 1 0 1 1 X X X X X X RD RD RD
PUT.FLAG 1 1 0 1 1 0 0 RA RA RA X X X X X X
PUT.SPR1 1 1 0 1 1 0 1 RA RA RA X X X X X X
PUT.DEBUG 1 1 0 1 1 1 0 X X X X X IM X X X

PUT.INTRMASK 1 1 0 1 1 1 1 X X X X X IM X X X
ADDI.# 1 1 1 0 0 0 0/1 RA RA RA IM IM IM RD RD RD
SUBI.# 1 1 1 0 0 1 0/1 RA RA RA IM IM IM RD RD RD

GET.THREAD 1 1 1 0 1 0 0 X X X X X X RD RD RD
SWFT 1 1 1 1 0 0 0 RA RA RA RB RB RB RD RD RD
SWSG 1 1 1 1 0 0 1 RA RA RA RB RB RB RD RD RD
SWSGI 1 1 1 1 0 1 0 RA RA RA RB RB RB RD RD RD
SWSGD 1 1 1 1 0 1 1 RA RA RA RB RB RB RD RD RD
NOP 1 1 1 1 1 X X X X X X X X X X X

Architecture Manual

 39

Interrupts

Figure 16 describes the interrupt interface between the processor and the device that
interrupts. An interrupt cannot be processed if the thread is inactive or if the thread is
waiting to be synchronized. Once the processor latches the address and acknowledges the
interrupt, the following events take place:

1. Complete the current instruction.
2. Saves the processor state (PC+2, condition codes and R0 thru R7)
3. Service the interrupt
4. Restore processor state
5. Continue with the execution of the current program

If an interrupt is being serviced, another interrupt will not be acknowledged. Although an
exception can occur within interrupt, an interrupt will not be serviced when an exception
is being handled. An interrupt is not acknowledged when the current instruction is a
jump.

Figure 16: Interrupt interface

The timing relation between the processor and the device interrupting the thread is show
in Figure 17.

Architecture Manual

 40

Figure 17: Interrupt timing

Architecture Manual

 41

Exceptions

Exceptions are internal to the processor. Exceptions can be caused due to:

- Illegal instruction
- Unaligned address for load
- Starting hardware thread that is already busy
- Killing a thread that is waiting to be synchronized
- Store to a location from 0000 – 7FFF (Program Memory)

The exception raised in one thread usually affects only that thread, all other threads will
continue to run without any issues. The instruction is not committed into the register file.
The thread state (PC, condition codes, instruction and R0 through R7) is saved in a
predefined location. An exception routine is serviced before the thread is killed. The
thread can be restarted only by system reset or through some other thread. Exceptions
mask interrupts, implying that an interrupt will not be serviced if an exception is being
handled.

ILLEGAL_INSTRUCTION
JMP.SPR1 when not servicing an interrupt
Unrecognized opcode

UNALIGNED_ADDRESS
Loads and stores from an even address
Jump to an even address

ILLEGAL_ADDRESS
Jump to data memory
Store to program memory

ILLEGAL_INIT
Start a new thread that is already active

ILLEGAL_WAIT
Waiting for a thread which is already dead

Architecture Manual

 42

The following table lists the exception codes and their names…

Table 7: EXR definition

BIT NUMBERS IN EXR EXCEPTION
0 ILLEGAL_INSTRUCTION
1 UNALIGNED_ADDRESS
2 ILLEGAL_ADDRESS
3 INIT_THREAD
4 ILLEGAL_WAIT

5-15 Reserved

Architecture Manual

 43

Writing to Output Ports

The write instruction has the following semantic…

WRITE IMM3, $CB, $RD

The contents of R2 are written into the port number that is mapped by IMM3. If the write
is successful, $CB in the flag register is set. If the write to the port is unsuccessful, a
value 0 is written into the location in the flag register pointed by $CB. Table 8 indicates
the mapping of the output port number to the IMM3 value.

Table 8: Port mapping

IMM3 PORT #
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Figure 18 shows the output control interface of WIMP and the devices. Each port in the
output controller is associated with an output queue. Each queue is 256 deep and 16-bits
wide. If the queue associated with the port to be written into is not full, the output control
writes the data into the queue and returns a 1 in the same clock cycle. On the other hand,
if the queue is full, the output control prevents the writing into the queue and returns the
status as 0. The timing relationship is shown in Figure 19. A similar protocol is followed
on the device side where a read command is expected from the output device when the
queue is not empty.

Architecture Manual

 44

Output Control

Dout Empty Read

Port 1 Port 8

Dout Empty Read

Processor Interface

Port ID Din Status Write

Figure 18: Output control interface

Value

Clock

Write

Port # XX XX

Status

Processor Issues a Write
Signal to Output Control

Output Control Issues Status
The Same Cycle

ValueDin XX XX

Figure 19: Timing relation between WIMP core and output control

Architecture Manual

 45

Reading from Input Ports

The read instruction has the following semantics…
READ IMM3, $CB, $RD

The contents from port specified by IMM3 are copied into RD. If the read operation from
the port was successful, a 1 is written into $CB; otherwise, a 0 is written into $CB. The
processor can read from 8 different ports specified by the IMM3 value. Table 9 shows the
mapping of the input ports to the IMM3 value.

Table 9: Port mapping

IMM3 PORT #
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

The read instruction communicates with the input control in execute 1 stage of the
pipeline. The input control can interface 8 input ports to the processor core. Each port is
associated with an input queue. An input device connected to an input port writes into the
FIFO as long it is not full. On the other hand, the processor can read from an input port
only when the queue is not empty. The status signal returns a 0 when the processor
attempts to read from an empty input queue and a 1 when the queue is not empty. Figure
20 shows the Input Control interface on the processor core side and the input device side.

Figure 20: Input control interface

Architecture Manual

 46

Initializing a New Thread

- During system reset
At reset, only hardware thread 1 is active. This is the default thread and is
hardwired into the system.

- Normal working
During normal working, a thread can initiate a new hardware thread with the INIT
instruction.

The semantics of the INIT instructions are as follows…

INIT $RA, IMM2

Example,
Thread 2 has the instruction,

INIT $5, 0x03

The processor checks if thread 3 is already active. If so, an INIT THREAD EXCEPTION
occurs in thread 2 while thread 3 continues as is. If thread 3 is not active, the PC for
thread 3 is loaded with the contents of R5. Thread 3 will start in the next machine cycle.
Once thread 3 is active, it can be killed only by the KILL instruction present in its
instruction stream. Thread 2 will have no more control over thread 3.

If all the threads are killed, the processor halts. The processor can be activated only with
the system reset. There should be at least one active thread at all times.

The INIT instruction takes any where from 4 to 7 clock cycles to come into effect. In
other words, the new thread is brought into effect in the next machine cycle. The
following example makes the timing of the INIT instruction clear.

Consider the following instruction in the memory

Table 10: Initializing Threads
T1 T2 T3 T4

ADDR INSTR ADDR INSTR ADDR INSTR ADDR INSTR
Z INIT T2, Y x x x x x x

Z+2 ADD Y LOAD x x x x
x : don’t care

Table 10 shows thread 1 initialing a new thread T2 to start from location Y. The
instruction INIT instruction is present in the location Z. The processor guarantees that the
instruction in thread T2 (which is LOAD) WILL be executed after the instruction in Z+2
(which is an ADD), implying that the new thread will always start in the next machine
cycle.

Architecture Manual

 47

Thread Synchronization

The processor supports a very simple form of a thread synchronization using the WAIT
instruction. The semantics of the WAIT instruction are as follows:

WAIT IMM[3], IMM[2], IMM[1], IMM[0], S10

IMM[0] Thread 0
IMM[1] Thread 1
IMM[2] Thread 2
IMM[3] Thread 3

Say the instruction in thread 1 is
WAIT 1, 0, 1, 0, 2

When the processor comes across this instruction, it will stall thread 1 till it comes across
a similar instruction in thread 3 that points to the synchronization point 2.

Figure 21: Thread synchronization using barrier

It wouldn’t matter if thread 3 had reached the barrier point before. Thread 3 will stall
until thread 1 reaches the same instruction. Both the WAIT instructions can be in
different places in the memory. An ILLEGAL_WAIT exception will occur in thread-n if
thread-n is waiting for thread-m and thread-m is killed.

Architecture Manual

 48

Rules to be followed for wait instruction
 - The thread that reaches the barrier first should start first
 - A thread cannot wait for a dead thread

Architecture Manual

 49

Video RAM and the VGA

The video RAM has a byte for every pixel on the VGA. The byte corresponds to the grey
scale value of the pixel that needs to be displayed by the VGA. Figure 22 shows the
position on the VGA corresponding to a location in the video RAM.

VGA

Video RAM, Segment 1

Video RAM, Segment 2

0x0000

0xFFFF
0x0000

0xDFFF

Figure 22: Video RAM and the VGA

Writing into the Video RAM is decoupled from refreshing aspect of the VGA.
Applications can write into the Video RAM using the SWSG, SWSGI and SWSGD
instructions.

Architecture Manual

 50

References

Ruby B. Lee and A. Murat Fiskiran, “PLX: A Fully Subword-Parallel Instruction Set
Architecture for Fast Scalable Multimedia Processing”, Proceedings of the 2002 IEEE
International Conference on Multimedia and Expo (ICME 2002), pp. 117-120, August
2002

John Glossner, Michael Schulte, Mayan Moudgill, Suman Mamidi, “A Low-Power
Multithreaded Processor for Baseband Communication Systems”, Springer-Verlag
(2004), in print

Theo Ungerer, Borut Robic, Jurij Silc, "A survey of processors with explicit multi-
threading", ACM computer survey, 2003, vol. 35, pp. 29-63

