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WIMP Micro-architecture 

Pipeline Description 
 
Figure 1 shows the block diagram of WIMP. The two physical banks on the prototype 
board are logically divided into instruction and data memory. The instruction memory 
ranges from 0000 to 7FFF. The data memory starts at 8000 and ends at FFFF.  
 

 
Figure 1: WIMP block diagram 

 
Instructions are fetched in the Fetch stage. For any thread, a new instruction is being 
fetched, while the old instruction is being retired, implying that the fetch and the 
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writeback stage are merged. The control signals for all the units are generated in the 
decode stage. In case, a thread is not active, the fetched instruction is converted to a NOP. 
In addition, the PC is also prevented from incrementing when the thread is not active. 
The register file and the flag register are read in the decode stage. The decode stage 
detects the illegal instruction, unaligned address for loads, stores and jump registers, and 
illegal init exceptions. The decode stage also flags if the thread is ready to acknowledge 
an interrupt. Two execute stages, namely E1 and E2 are dedicated to functional units. 
WIMP has a subword parallel ISA and the functional units supporting this ISA are shown 
in a dotted enclosure. E1 holds the ALU, shifter, permute unit, and the multiplier. In 
addition, unaligned and illegal addresses for jump immediate are detected in E1. The 
adder for the MAC instruction is present in E2. The data is fetched from memory in E2. 
Exceptions are detected in every stage but are handled only in E2. Interrupts are also 
sampled in E2. At the end of E2, the PC is made ready to fetch the next instruction and 
the current instruction is made ready for retirement.  

Register File 
 
Architecturally, every thread has it own register file. Each register file has two write ports 
and three read ports as shown in Figure 2. The three read ports support instructions like 
MAC that require three operands. The two write ports allow instructions like LWI (load 
increment) and SWI (store word increment) to be committed without stalls.  
 

 
Figure 2: Register file port map 

 
The register files are implemented in the block select RAM’s provided in the XILINX 
Virtex architecture. The block select RAM’s are configured to be 16-bits wide and 256 
deep. Three block-select RAM’s are used to allow three read ports in the register file. 
Though the four register files are architecturally mutually exclusive, they reside in the 
same set of block-select RAM’s. Table 1 shows the address mapping of the block select 
RAM’s to the thread id. 
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Table 1: Using block select RAM for register files 

Address Range Thread  number 

0 – 7 Thread 1 

8 – 15 Thread 2 

16 – 23 Thread 3 

24 – 31 Thread 4 
 

 
The other locations in the block select RAM are unused. Writes are processed at twice the 
processor clock rate to simulate the two write ports.  
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Flag Register 
 
WIMP uses a limited form of predication applied to jump instructions only. There is a 
flag register available for every thread. The bits in the flag register are modified by the 
compare and arithmetic instructions. The jump instructions read the bits in the flag 
register to resolve the jump. Flag(0) is always 1 to allow unconditional jumps. Figure 3 
shows the interface for a flag register that has two write ports and a single read port.  
 

 
Figure 3: Flag register interface 

 
The flag register clocks in PR_1 only if SW indicates a 16-bit operation. The flag register 
clocks in both PR_1 and PR_2 if the SW indicates an 8-bit operation. The address to be 
written into is indicated by WCB. The jump instructions read PRED_OUT pointed by 
RCB[2:0]. The processor jumps only if this value is ‘1’.  
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WIMP and Interrupts 
 
 Figure 4:  Interrupt interface describes the interrupt interface between the processor and 
the device that interrupts. An interrupt cannot be processed if the thread is inactive. Once 
the processor latches the address and acknowledges the interrupt, the following events 
take place: 
 

1. Complete the current instruction. 
2. Saves the processor state (PC+2, condition codes and R0 thru R7) 
3. Service the interrupt 
4. Restore processor state 
5. Continue with the execution of the current program 

 
If an interrupt is being serviced, another interrupt will not be acknowledged. Although an 
exception can occur within an interrupt, it will not be serviced when an exception is being 
handled. An interrupt is not acknowledged when the current instruction is a jump. 
 

 
Figure 4:  Interrupt interface 

 
The timing relation between the processor and the device interrupting the thread is show 
in Figure 5. 
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Figure 5: Interrupt timing 

 

Implementing Interrupts in WIMP 
 
Interrupts are handled by software rather than hardware. The ISA and the hardware 
provide support for handling interrupts, but do not handle them by its own.  
 
The processor incorporates the following instructions that that the ISA provides for 
interrupt handling. 
 
- GET.FLAG $RD 
  Copies the 8-bit flag register (predicate register) into the lower byte of register RD.  The 
higher byte of register RD is cleared. 
 
- GET.SPR1 $RD 
  Copies the SPR1 register (holds address to jump to after interrupts) into register RD. 
 
- GET.SPR2 $RD 
  Copies the SPR2 register (holds address to jump to after exceptions) to register RD. 
 
- GET.EXR $RD 
  Copies the EXR register (holds type of exception that occurred) to register RD.  In 
addition the EXR register is cleared. 
 
- GET.WAIT_REG $RD 
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  Copies the 8-bit WAIT_REG register (synchronization register) into the lower byte of 
register RD.  The higher byte of register RD is cleared. 
 
- GET.TAR $RD 
  Copies the 4-bit TAR register (thread active register) into the lower four bits of register 
RD.  The upper twelve bits of register RD are cleared. 
 
- GET.WS $RD 
  Copies the 4-bit WS register (holds which threads are currently waiting) into the lower 
four bits of register RD.  The upper twelve bits of register RD are cleared. 
 
- GET.INTR $RD 
  Copies the INTR_ADDR register (holds address to jump to when interrupt occurs) to 
register RD. 
 
- PUT.FLAG $RA 
Loads the flag register with the lower byte of register RA. 
 
- PUT.SPR1 $RA 
Loads the SPR1 register with the contents of register RA. 
 
- PUT.DEBUG IMM1 
Writes the value specified in the IMM field into the 1-bit DEBUG register. 
 
- JMP.SPR1 
Loads the PC with the contents of the SPR1 register.  In addition, the intr_mask register 
is cleared, signifying that the interrupt has been serviced and the processor is ready to 
accept another interrupt. 
 
This instruction is available to the user. No opcode is assigned to it though.  
- INTRCOMPLETE 
This is a pseudo instruction that translates to something like… 
LI.HI $7, 0x06 
LI.LO $7, 0x00 
JMPR $7, $0 
 
Consider the sequence of instructions… 
0001              ADD 
0002  SUB 
0003  MUL 
 
Say the interrupt with the destination address is detected between the SUB and the MUL 
instruction. The SUB instruction is completed and the PC is loaded with a predefined 
value 0500 (See memory map in the architecture manual). The Intr Mask (Interrupt 
Mask) is set to avoid an interrupt within an interrupt. The software routine in 0500 saves 
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the thread state before jumping to the destination address. The interrupt handler indicates 
the completion of its routine by the INTRCOMPLETE instruction. The 
INTRCOMPLETE instruction loads the PC with the routine that restores the processor 
state.  After the processor state is restored, the Intr Mask is reset, indicating that the 
processor is ready to accept another interrupt. In the final step, the processor loads the 
MUL instruction and continues normal execution.  
 
#define Intr Mask = Interrupt Mask, when 1, interrupts not acknowledged 
#define Intr = The interrupt pin at the external interface 
#define ws[3:0] = A four bit register that indicates if the thread is in wait state 
#define tar[3:0] = A four bit register that indicates if a thread is active 
#define current_thread  = A two bit value that indicates the current thread being processes 
by the stage 
#define Intr_Addr[15:0] = 16 bit register, holds address to jump to when INT occurs 
 
D: 

If ((instruction != jump) & (tar[current_thread] != 0) & (ws[current_thread] != 1) 
& (!Intr_Mask)) 

Intr_accept_ready = 1 
 Else 

Intr_accept_ready = 0 
E2: 
  If ((Intr_accept_ready == 1) & (~exception_detect) & (INTR = active)) 
  Set Intr Mask 
  Pc = OS_intr_address 
  Set Ack 
  Clock in ISR address into Intr Addr 
 Else 
  Reset Ack 
 Endif  
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WIMP and Exceptions 
 
Exceptions are internal to the processor. Exceptions can be caused due to: 

- Illegal instruction 
- Unaligned address for load 
- Starting hardware thread that is already busy 
- Killing a thread that is waiting to be synchronized 
- Store to a location from 0000 – 7FFF (Program Memory) 

 
The exception raised in one thread usually affects only that thread, all other threads will 
continue to run without any issues. The instruction is not committed into the register file. 
The thread state (PC, condition codes, instruction and R0 through R7) is saved in a 
predefined location. The thread is killed after the processor’s state is put onto the output 
port. The thread can be restarted only by the system reset or through some other thread. 
Exceptions mask interrupts, implying that an interrupt will not be serviced if an exception 
is being handled. 
 
 
ILLEGAL_INSTRUCTION  
JMP.SPR1 when not servicing an interrupt 
Unrecognized opcode 
 
UNALIGNED_ADDRESS  
Loads and stores from an even address 
Jump to an even address 
 
ILLEGAL_ADDRESS 
Jump to data memory 
Store to program memory 
 
ILLEGAL_INIT 
Start a new thread that is already active 
 
ILLEGAL_WAIT 
Waiting for a thread which is already dead 

Implementing Exceptions in WIMP 
 
Exceptions are handled by software rather than hardware. The ISA provides support for 
handling exceptions. An exception causes the processor to enter a debug mode where the 
register R0 can now be written into and is not read only. The destination for the processor 
store state is loaded into R0. 
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The following table lists the exception codes and their names… 
 

Table 2: EXR definition 

BIT NUMBERS IN EXR EXCEPTION 
0 ILLEGAL_INSTRUCTION 
1 UNALIGNED_ADDRESS 
2 ILLEGAL_ADDRESS 
3 INIT_THREAD 
4 ILLEGAL_WAIT 

5-15 Reserved  
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Initializing a New Thread 
 

- During system reset 
At reset, only hardware thread 1 is active. This is the default thread and is 
hardwired into the system.  

- Normal working  
During normal working, a thread can initiate a new hardware thread with the INIT 
instruction.  

The semantics of the INIT instructions are as follows: 
 

INIT $RA, IMM2 
 

Example, 
Thread 2 has the instruction, 

 
INIT $5, 0x03 

 
The processor checks if thread 3 is already active. If so, an INIT THREAD EXCEPTION 
occurs in thread 2 while thread 3 continues as is. If thread 3 is not active, the PC for 
thread 3 is loaded with the contents of R5. Thread 3 will start in the next machine cycle. 
Once thread 3 is active, it can be killed only by the KILL instruction present in its 
instruction stream. Thread 2 will have no more control over thread 3.  
 
If all the threads are killed, the processor halts. The processor can be activated only with 
the system reset. There should be at least one active thread at all times.  
 
The INIT instruction takes any where from 4 to 7 clock cycles to come into effect. In 
other words, the new thread is brought into effect in the next machine cycle. The 
following example makes the timing of the INIT instruction clear. 
 
Consider the following instruction in the memory 
 

T1 T2 T3 T4 
ADDR INSTR ADDR INSTR ADDR INSTR ADDR INSTR 

Z INIT T2, Y x x x x x x 
Z+2 ADD Y LOAD x x x x 

x : don’t care 
 
In the above sequence of instructions, thread 1 initialized a new thread T2 to start from 
location Y. The INIT instruction is present in location Z. The processor guarantees that 
the instruction in thread T2 (which is LOAD) WILL be executed after the instruction in 
Z+2 (which is an ADD), implying that the new thread will always start in the next 
machine cycle. 
 



Design Document   

 14

The following algorithm should ensure that the new thread that starts will begin its 
execution in the next machine cycle. 
 
#define Tar[3:0] = A register that indicates if the thread is active 
#define Imm2 = the thread to be started provided in the instruction 
#define new_address = location from where the new thread starts off 
#define current_thread = the thread being processed by E2 
#define nt_addr[15:0] = a register that holds the possible PC 
#define nt_reg[3:0] = indicates which thread needs to be activated 
E2: 
 If (Tar[current_thread] == active) 
  If (Tar[Imm2] != 0) 
   Raise_exception 
  Else 
   Set nt_reg[Imm2]  
   Write nt_addr[Imm2] = new_address 
  Endif 
 Else 
  If (nt_reg[current_thread] == active) 
   Set tar[current_thread] 
   Send new_address to memory from nt_addr 
   Reset EXR 
   Reset Intr_Mask 
   Reset nt_reg[current_thread] 
  Endif 
 Endif 
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Thread Synchronization 
 
The processor supports a very simple form of a thread synchronization using the WAIT 
instruction. The semantics of the WAIT instruction are as follows… 
 
WAIT IMM[3], IMM[2], IMM[1], IMM[0], SP 
 
IMM[0]  Thread 0 
IMM[1]  Thread 1 
IMM[2]  Thread 2 
IMM[3]  Thread 3 
 
Say the instruction in thread 0 is  
WAIT 1, 0, 1, 0, 0 
 
When the processor comes across this instruction, it will stall thread 1 till it comes across 
a similar instruction in thread 3 that points to the synchronization point 0.  
 

 
 

Figure 6: Illustrating thread synchronization 

 
It wouldn’t matter if thread 3 had reached the barrier point before. Thread 3 will stall till 
thread 1 reaches the same instruction. Both the WAIT instructions can be in different 
places in the memory. An ILLEGAL_WAIT exception will occur in thread-n if thread-n 
is waiting for thread-m and thread-m is killed. 
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Rules to be followed for wait instruction 
  - The thread that reaches the barrier first should start first 
 - A thread cannot wait for a dead thread 
 
The implementation uses a wait register pointed to by the synchronization point provided 
in the instruction. The following changes need to be made to the pipeline… 
 
#define ws[3:0] = indicates which threads are in wait state 
#define Tar[3:0] = a register that indicates if the thread is active  
#define Imm4 = indicates which threads need to be synchronized 
#define wait_reg[3:0] = 4 bit register that implements wait instruction 
#define current_thread = the thread being processed by that stage of the pipeline 
 
/* All states change the next clock cycle, which implies that if a thread encounters a wait 
instruction, it waits on the next instruction */ 
E2:  

if(thread is not in wait state)     
if(instruction  is a legal wait)      

set_wait_state <= 1'b1; 
if(curr thread is the first to arrive)  

compliment others bits wait reg 
else 

compliment bit corresponding to itself in wait reg 
endif 

endif 
else 

hold_pc  
annul_exceptions  

endif 
 

 
Here is a step by step example of what happens to the wait reg and wait state registers 
when the wait instructions are encountered in different threads. 
 
T0: wait 0,0,1,1,1 T1: wait 0,0,1,1,1 
 
Figure 7 shows the state of the wait reg and the wait state registers before the wait 
instructions arrive. Let T0 arrive first instruction to be fetched. After the execution of the 
wait instruction, the wait reg  and the wait state registers look like in Figure 8. Thread 0 
enters the wait state where in it waits for thread 1 to arrive at the synchronizing point. 
Once T1 fetches the same instruction, the wait reg and the wait state registers look like in 
Figure 9. The threads stay in wait state for one more clock cycle after the execution of the 
wait instruction in T1 and then both instructions proceed with their new PC’s. This is 
shown in Figure 10. 
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Figure 7: Wait reg and wait state registers before the wait instruction arrive 

 
 

 
Figure 8: Wait reg and wait state registers after the instruction (wait 0,0,1,1,1) in T0 arrives 

 
 

 
Figure 9: Wait reg and wait state registers after wait instruction (wait 0,0,1,1,1) in T1 arrives 

 
 

 
Figure 10: Wait reg and wait state register one clock cycle later. Now both the threads are 

synchronized 
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Deciding the Next PC 
 
The program counter (PC) holds the address of the present instruction. The PC is loaded 
at the end of E2 phase for each thread. If the thread is inactive, the PC can be loaded only 
from the nt_reg register, which is loaded by another active thread. When the thread is 
active, the PC can be loaded from any of the following sources in the increasing order of 
priority.  
 

- PC + 2 
- Interrupt handler 
- PC+IMM8 or the value stored in the register specifies in the jump instructions 
- Exception handler 
- PC (If in wait state) 

 
The PC generated by the exception handler is given the highest priority if the thread is 
not in a wait state. If an interrupt occurs when a jump instruction is being executed, the 
interrupt is handled after the jump. The program counter is loaded with PC + 2 only if 
there are no exceptions, jumps or interrupts. 
 



Design Document   

 19

 

Writing to Output Ports 
 
The write instruction has the following semantic… 
 
WRITE IMM3, $CB, $RD 
 
The contents of R2 are written into the port number that is mapped by IMM3. If the write 
is successful, $CB in the flag register is set. If the write to the port is unsuccessful, a 
value 0 is written into the location in the flag register pointed by $CB. Table 3 indicates 
the mapping of the output port number to the IMM3 value.  
 

Table 3: Output port mapping 

IMM3 PORT # 
000 1 
001 2 
010 3 
011 4 
100 5 
101 6 
110 7 
111 8 

 
Figure 11 shows the output control interface of WIMP and the devices. Each port in the 
output controller is associated with an output queue. Each queue is 256 deep and 16-bits 
wide. If the queue associated with the port to be written into is not full, the output control 
writes the data into the queue and returns a 1 in the same clock cycle. On the other hand, 
if the queue is full, the output control prevents the writing into the queue and returns the 
status as 0. The timing relationship is shown in Figure 12. A similar protocol is followed 
on the device side where a read command is expected from the output device when the 
queue is not empty.  
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Output Control

Dout Empty Read

Port 1 Port 8

Dout Empty Read

Processor Interface

Port ID Din Status Write

 
Figure 11: Output control interface 

 

Value

Clock

Write

Port # XX XX

Status

Processor Issues a Write 
Signal to Output Control

Output Control Issues Status 
The Same Cycle

ValueDin XX XX

 
Figure 12: Timing relation between WIMP core and output control 

 
Figure 13 shows a generic data and control flow used in WIMP that connects the output 
control to the output device through an interface. The same generic flow is used to 
connect the keyboard and the RS232 interface (SPART). 
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FIFO

Pipeline

Output Device 
Interface

Output Device

Empty Read Data

Empty Write Data

FIFO

Output Device 
Interface

Output Device

Empty Read Data

Empty Write Data

 
Figure 13: Connecting output devices to WIMP 

 

Interfacing SPAT (Special Purpose Asynchronous Transmitter) 
 
The output control interfaces with the SPAT through port 1 and port 2. Port 1 is assigned 
to the transmitter and port 2 is assigned to the baud rate generator. Figure 14 shows the 
SPAT interface to the output control while Figure 15 shows the timing relationship that is 
required from the interface and the transmitter. 
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SPAT Interface

Wr Tx_dat TBR

TX Baud Rate Gen

Wr Brg_dat

Output Control Interface

Dout Empty Read Dout Empty Read

Port 1 Port 2

 
Figure 14: SPAT transmitter interface 

 
The SPAT interface issues a read command to the output interface when the output queue 
is not empty and the transmitter is not busy (TBR = 1). On the other hand, the SPAT 
interface will unconditionally write into the divisor buffer of the baud rate generator 
when the output queue of port 2 has some data.  
 

Clock

Empty

Read

TBR

Tx 
Write

Output Queue Is Loaded

SPAT Control Issues Write 
The Same Cycle

TBR Goes Low The Next 
Cycle

 
Figure 15: Timing relation between SPART transmitter and output control 
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Reading from Input Ports 
 
The read instruction has the following semantics… 
READ IMM3, $CB, $RD 
 
The contents from port specified by IMM3 are copied into RD. If the read operation from 
the port was successful, a 1 is written into $CB, otherwise a 0 is written into $CB. The 
processor can read from 8 different ports specified by the IMM3 value. Table 4 shows the 
mapping of the input ports to the IMM3 value.  
 

Table 4: Input port mapping 

IMM3 PORT # 
000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

 
The read instruction communicates with the input control in the first execute stage of the 
pipeline. The input control can interface 8 input ports to the processor core. Each port is 
associated with an input queue. An input device connected to an input port writes into the 
FIFO as long it is not full. On the other hand, the processor can read from an input port 
only when the queue is not empty. The status signal returns a 0 when the processor 
attempts to read from an empty input queue and a 1 when the queue is not empty. Figure 
16 shows the Input Control interface on the processor core side and the input device side. 
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Figure 16: Input control interface 

 

Keyboard Controller 
 
PS2 Interface IP ref: http://opencores.org 
 
The keyboard interface use Interrupt Port 1, Output Port 3 and Input Port 1 of the 
processor. The output port is used to send the HOST commands to the keyboard and the 
keystroke is read via the input port.  Figure 17 shows the keyboard interface. 
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Figure 17: Keyboard interface 

 
 
The keyboard interface state machine keeps track of the output port and issues a READ 
command to the processor whenever the output queue is not empty. Then the data read is 
written into the keyboard interface IP. The keyboard Interface IP is designed such that 
any write operation to the keyboard (HOST commands) will have precedence over the 
read commands, and the rest of the keystrokes will be stored into the keyboard buffer. 
 
Whenever a keystroke is available at the keyboard, the Keyboard Interface checks 
whether the Input Queue at Input Port is full. If the Queue is not full, then an interrupt is 
generated. After receiving an ACK from the processor the data is written into the input 
Queue. 
 



Design Document   

 26

Hardware Support for Fault Tolerance 
 
WIMP has some basic hardware support for time redundant fault tolerant computing that 
allows: 

• Track data values stored in the memory  
• Input-Output port loopback 
• Threads to interact using interrupts 

 
SWFT: An instruction to track stores 
The semantics of the SWFT instruction are as follows: 
 
SWFT $RA, $RB, $RD 
 
The contents of register RB are stored into the address pointed by register RA. In 
addition, the data (contents of $RB) are also posted into the output port indicated by the 
contents of register RD. If the write into the port is unsuccessful, flag(6) is cleared; if the 
write into the port is successful, flag(6) is set. The write into the store is unaffected with 
this status.  
 
Input-Output port loopback 
 
In addition, WIMP provides a path between the output ports 4 and 5 and the input ports 
port 4 and 5. Data values written into output port 4 can be read from the input port 4. 
Data values written into output port 5 can be read from the input port 5. This facilitates 
tracking data values written into the memory.  
 

 
Figure 18: Port loopback 
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Threads interrupting threads 
 

 
Figure 19: Threads interrupting threads 

 
The output port 8 is dedicated for threads to interrupt other threads. Bits 0 through 3 
interrupt threads 0 to 3. The interrupt controller is state machine shown in Figure 20. This 
decouples the data values at the output port and the actual interrupt protocol.  
 

 
Figure 20: Interrupt controller state machine 
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WIMP Memory Interface and VGA 
 
The prototype board comes along with two memory banks, one on the left and right bank 
of the FPGA. WIMP uses the right bank for instructions and the left bank for data. The 
processor talks to each of the memories through the memory interface provided at the 
course website. One interface is instantiated for each memory bank. The interface 
[written by Matt King] has the following signals on the memory and the processor side: 
 

Memory Interface
(Written by 
Matt King)

WEN

OEN

CEN

ADDR[18:0]

DATA[15:0]

CLOCK RESET

Processor SideMemory Side

READ

WRITE

ADDR[19:0]

DATA[15:0]

CLOCK_90  
Fig 21: Memory interface on processor side and memory side 

 
The interface allows either a read or a write in a single cycle, not both. The processor 
requires a read and a write simultaneously in the instruction memory. This allows 
programs to be loaded into the memory from the PC while instructions for other threads 
are being fetched. On the other hand, the left bank holds the video RAM as well as the 
data memory. Both need to be accessed in a single clock cycle; for data access and VGA 
refresh. For this reason, the memory interface is clocked at twice the processor clock rate 
that simulates a two port memory.  
 
WIMP uses only the lower order 16-bits out of the 19-bits provided to address the 
memory since WIMP is a 16-bit processor. Figure 22 shows the data flow between the 
processor and the memory through the memory interface.  
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Figure 22: Data flow between memory and WIMP 

 
VGA refresh is controlled by the VGA controller that was downloaded from the course 
web-page. This interface supports a resolution of 256x480 pixels at a frequency of 
12.5MHz. Figure 23 shows a high level data flow between the processor and the VGA. 
 

WIMP

Memory 
Interface

(Written by 
Matt King)

0x8000-0xFFFF
(Data)

Video RAM
Segment 1

Right Bank

Video RAM
Segment 2

VGA 
Controller RAMDAC

VGA

Pixel Data

Control Signals

 
Figure 23: WIMP and VGA 

 
The VGA controller generates the address corresponding to the scan lines of the VGA. 
The VGA controller also generates the HSYNC and VSYNC signals that control the 
VGA scanning. Additionally, the VGA controller initializes the RAMDAC with the 8-bit 
grey scale and color map.  



Design Document   

 30

 

Hardware Counter 
 
WIMP has a 16-bit hardware counter that is accessible through the input and output ports 
6. The commands to start/stop/reset/load the counter are given through the output port 
and counter value is read through the input ports.  
 

Table 5: Controlling the hardware counter 

VALUE COMMAND 
10xx Clear counter 
0800 Start counter 
0400 Stop counter 
02VV Load VV into lower byte 
03VV Load VV into higher byte 

 VV = 8-bit hex value 
 
 
Example: 
 
To clear the counter: 
 
li  0x1000, $1  // Load clear command 
write   5, 1, $1   // Write into counter 
 
 
To start the counter: 
 
li  0x0800, $1  // Load start command 
write   5, 1, $1   // Write into counter 
 
To read the counter: 
read   5, 1, $1   // Write into counter into register 1 
 
The counter increments once every machine cycle, not every clock cycle, implying that 
the counter increments once for every four clock cycles. The counter value is inclusive of 
the start and the stop commands.  
 
Example 
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li  0x1000, $1  // Load clear command 
 
write   5, 1, $1   // Write into counter 
li  0x0800, $1  // Load start command 
write   5, 1, $1   // Write into counter 
nop 
nop 
li  0x0400, $1  // Load stop command 
write   5, 1, $1   // Write into counter 
read   5, 1, $1   // Write into counter value into register 1 
 
The contents of register 1 at the end of this instruction sequence are 0x0008. 
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ALU 
 
ALU Addition, Subtraction 
 
The ALU for WIMP is specialized for subword instructions.  To avoid using three adders 
(8-bit low subword, 8-bit high subword, 16-bit entire), we use two 8-bit adders and use 
some condition logic for propagating the carry bit. The following illustration depicts the 
simple logic involved to do this. 
 
 

 
 
Subtraction is implemented by complementing the input of the second operand and 
setting the LSB carry in to high.  For the adder, we use the synthesized adder generated 
from the verilog construct ‘+’. When the entire ALU is optimized for speed, it has a 
maximum combinational delay of around ~20 ns.  Obviously using a core generated 
version of an adder wouldn’t be much of an improvement as described in the multiply 
and accumulate section. 
 
 
ALU Comparison 
 
The comparison instructions have two output values; only one is relevant for 16-bit 
operating instructions.   If the condition to be tested is true for both subwords, ‘11’ will 
be outputted on the FLAG bus.  The datapath carries these bits onto a section of a larger 
register file defined by other parts of the instruction. 
 
All comparisons are computed in the typical manner, both normal and subword 
instructions.  For example, to prove a number is greater than or equal to another, the most 
significant bit (or bits) is checked for its sign after subtracting the two operands. 
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SUBTRACT 

SUBWORD 
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0
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ALU Logical 
 
WIMP implements four logical instructions: AND, OR, XOR, NOT.  Since these 
operations are purely bitwise, the implementation is straightforward and subword support 
is intrinsic.  
 
ALU Shifter & Rotator 
 
WIMP uses both variable shifting and includes shifting for subword instructions.  
Variable shifting can be implemented with stacks of multiplexers.  Given subword 
support, there are 18 possibilities for values that would need to be shifted in on the end of 
the two eight bit sections. 
 
To eliminate this hassle, the data can be arranged in such a way that that we don’t need to 
chain shifters.  Instead, we can use one large shifter with multiplexed inputs to handle the 
various data that would need to be shifted over (as depicted in the illustration below). 
 
 

 
 

 
 
WIMP does not use a core-generated version of these shifters; it needs to be pipelined 
and registered with a very fast clock.  Moreover, it does not need to be fast or space 
efficient to a large degree since the multiplier is considerably slower. 

HIGH BITS 

LOW BITS 

A[15:8]

A[7:0]
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Multiplier, MAC, and Permute Unit 
 
The Multiplier will take one cycle to execute and will be reused for the multiply and 
accumulate instruction.  In the second execute cycle, the results of the multiply will 
added to the register the result will be loaded into.  All of the permute instructions will 
take one cycle to complete and will be forwarded to the second cycle.  A MUX with 
forwarded control signals will determine the output of the whole unit.  The multiply and 
MAC instructions are in Figure 24 below and the MIX, MUX, and copy instructions are 
in  Figure 25 below.   

 
Figure 24: Multiply and MAC instruction 

 

 
Figure 25: Mix, Mux and Copy instructions 
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Clocking  
 
WIMP requires three different clocks; clock, 2 x clock and a 2 x clock phase shifted by 
90 degrees. The processor runs at clock, while the register file in the processor runs at 
twice the clock rate (clock_2x = 2 x clock). The memory interface requires clock_2x and 
clock_2x shifted by 90 degrees. The board has only one external clock input at pin 89. 
All the required clocks are generated from this clock input using the clock DLL’s present 
in the FPGA. Figure 26 shows how the clock DLL’s and clock buffers are connected to 
get the three required clocks.  
 

 
Figure 26: Clock generation for WIMP 

 
The clock DLL’s present in the FPGA has a clock input; the clock out follows the input 
clock, clock out/2 (that is half the input clock frequency and in phase with the input 
clock), and clock_90 (that is 90 degrees out of phase with the input clock). The clock_2x 
and clock_2x_90 are derived from the clock input through the clock DLL’s. The clock_x 
that is used by the processor is derived from the clock input (pin 89) through clock out/2 
of the clock DLL’s.  
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Synthesis and Implementation 
 

Initial Setup 
 
WIMP is coded in verilog, the HDL (Hardware Description Language) recommended for 
the course. FPGA express, a synthesis tool provided by Synopsys was used to synthesize 
the processor. The following options were initially used for the synthesis (no 
optimizations) 
 
Input clock    : 
 Clock   : 30 ns 
 Clock_2x  : 15 ns 
 Clock_2x_90  : 15 ns 
Area/Speed   :  Synthesis for area 
Max effort   : Medium 
 
The resulting edf file was mapped to XCV800-HQ240-4 using the XILINX project 
manager tool. The only constraints provided during implementation were the pin 
constraints.  
 
This resulting critical paths after implementation had the following delay: 
 
Clock    : 34.4 ns (~29MHz) 
Clock_2x   : 18.5 ns (~54MHz) 
Clock_2x_90   : 15.5 ns (~64MHz) 
 
On an average, 30% of the delay was due to logic, setup the rest was due to routing. This 
limits the clock to 27MHz and the clock_2x to 54MHz. This does not include the 
memory access time of 15ns and the FPGA pin delay of 5ns (total 20ns). Once these 
values are plugged in, clock is limited to 12.98MHz and clock_2x to 25.97MHz.  
 
There were no issues with the resource utilization of the FPGA. Only 25% of the slices 
were used for logic. This implied the goal of the future optimizations was to improve 
speed. 
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A Note on Optimizations 
 
WIMP was optimized in different phases. In the first phase, only the synthesis and 
implementation options were changed. The max fanout was made 8 and register 
duplication was enabled. In addition, the following changes were made: 
 
Input clock    : 
 Clock   : 20 ns 
 Clock_2x  : 10 ns 
 Clock_2x_90  : 10 ns 
Area/Speed   :  Synthesis for speed 
Max effort   : High 
 
The resulting critical paths after implementation had the following delay: 
 
Clock    : 30.3 ns (~33MHz) 
Clock_2x   : 16.2 ns (~62MHz) 
Clock_2x_90   : 14.8 ns (~68MHz) 
 
 
This limits clock to 31 MHz and clock_2x to 62 MHz without the memory access time of 
20 ns. Once the memory access time is included, clock is limited to 14 MHz and 
clock_2x is restricted to 28 MHz. 
 
In the second phase, the processor code itself was modified to increase clock frequency. 
The second phase consisted of 

• Redundant code analysis 
• Critical path analysis 

o Retiming – Moving logic around 
o Changing coding style 
o Changing data structures 

 
 
Code Coverage Analysis 
 
Synopsys VCS was used to find redundant code in the system. Benchmarks are executed 
on the processor while this tool monitors every line of the verilog code. The tool 
highlights: 

• Lines in the code not used in the verilog code (Line Coverage) 
• If-then-else structures not used in the system (Conditional Coverage) 
• State not entered in the state machine (Functional Coverage) 

This data is useful to reduce the code size to some extent so that the synthesis tool has 
less to work with.  
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Critical Path Analysis 
 
The timing analyzer that comes along with the XILINX implementation tool was used to 
find the critical path of the system. The critical path was optimized using one or more of 
the following ways: 
 

o Retiming – Moving logic around the pipes 
o Changing coding style 
o Changing data structures 
 

The top-level file was re-synthesized to find the next critical path. This process was 
continued till the improvements in the clock cycle time were negligible.  
 
The resulting critical paths after implementation and some optimizations had the 
following delay: 
 
Clock    : 22.2 ns (~45MHz) 
Clock_2x   : 12.2 ns (~83MHz) 
Clock_2x_90   : 10.1 ns (~99MHz) 
 
Again, these values do not include the memory access time. They are an indication of 
what the possible frequencies will be if there was perfect memory. Once the memory 
access time (20ns) are added, the clock frequency is limited to 15MHz and clock_2x 
frequency is limited to 30MHz. 
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 Waveforms showing important timings 
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