

Wisconsin’s Interleaved Multithreaded Processor

Software Manual

Bryan Berns
Jacob Petranak
Jordan Wenner

Parikshit Narkhede
Suman Mamidi

Design Document

 2

Table of Contents

Assembler .. 3

WIMP-IDE (WIMP Development Environment) ... 9

WIMPTERM (WIMP Terminal Client)... 10
Protocol For Image Transmission: Receiving From PC... 12

Protocol For Image Transmission: Sending From PC.. 12

WIMP Software Architecture .. 13

WIMPOS Kernel ... 14

I/O With Multiple Threads ... 14

Printing to SPAT... 15

Reading from keyboard ... 16

Passing Parameters To Functions.. 16

Getting a file from the PC.. 17

Sending a binary file to PC.. 18

Servicing shell commands .. 19

Updating The VGA ... 19

Image Processing Applications ... 20

Thresholding ... 20

Bit Plane Slicing ... 22

Edge Detection ... 23

Time Redundant Fault Tolerant Applications .. 26

Design Document

 3

Assembler

The assembler for WIMP is very versatile. It supports symbols and multiple address code
mappings. To anticipate design changes in the instruction set, it gains its instruction
knowledge from the instruction documentation itself. The assembler is written in C++
and is compiled into one executable for simplicity.

Part 1: Numerical Addressing & Comments

The WIMPy assembler includes support for strings, hexadecimal integers and decimal
integers. Any statement requiring an integer input will parse the integer for a ‘0x’
precedent. If the number is preceded with a ‘0x’, the following decimal numbers will be
treated as base 16. If it is not present, base 10 will be assumed. For example,

Using hexadecimal: 0xF
Equivalent decimal: 15

Strings can only be used in the .data section, as elaborated below. Strings are identified
by being surrounded with quotation marks. They can contain three useful escape
characters: \n, \t, \0. The \n will evaluate to the byte value for a ‘newline’. The \t will
evaluate to the byte value for a tab. The \0 will evaluate to a null byte value (0), which
may be useful for a produced to know when the string has ended.

Comments are indicated by the pound symbol: # There is no multi-line comment
indicator, each line must be preceded with #.

Part 2: Coding Sections

The WIMP assembler includes three section directives: code, section, include. The
‘include’ statement is actually a directive, but it must be used in conjunction with a
section.

.data ADDR

The .data section indicates any following non-comment lines will be interpreted as data
variables, which has a special syntax. The ADDR section specifies where the data
section begins. A .data section is NOT needed for each variable, as multiple variables’
addresses are calculated by ADDR + sizeof(previous_varabiles). For example:

.data 0x4000 # This means the first variable
 # will appear at memory address 0x4000
string_one:0x40 # This variable begins at 0x4000
integer_one:2 # This variable appears at 0x4042
integer_two:2 # This variable appears at 0x4044

Design Document

 4

Again notice the interchangeability of hexadecimal and decimal integers. One can also
indicate an initial value for a variable by following the byte size parameter with ‘=’. For
example:

.data 0x4000
string_one:0x40=”Name: Tom\n”
integer_one:2=16
integer_two:2=0x10

Giving variable initial variables will allow the assembler to output a memory file for the
XESS board with these values. Please note if more than two bytes is specified is
‘initialized’ to an integer values, the assembler will put the value into the first two bytes.

Aside from strings, the assembler can also load binary files when prefixed with a ‘<’
character. For instance, the following code load the binary file ‘image16x16.bin’ into the
address 0x5000:

.data 0x5000
string_one:256=<images/image16x16.bin

If the file is less than the data allocation the values will be filled with don’t cares or 0xFF,
depending on the file output. This is also the case for over-allocated strings.

.code ADDR

Similar to data, the .code statement takes an address which indicates the first instruction it
encounters is at that addresses. Following memory location of following addresses is
calculates as ADDR + 2*number_of_previous_instructions. There are three main types
of instructions which gain more specific meaning via the instruction file, which is a tab
delimited output of WIMP’s ISA Excel file. The details of the parsing need not be
discussed, but it is useful to know the assembler will check to see if a parameter begins
with a ‘$’ if the instruction require a register. For example:

.code 0x2000 # This means the first instruction
 # will appear at memory address 0x2000
add.16 $2,$2,$3 # Begins at 0x2000
li.hi 0xF,$2 # Begins at 0x2002
li.lo 30,$2 # Begins at 0x2004

It is also legal to replace the comma between parameters with a space. Thusly ‘add.16 $2
$2 $2’ would also be legal syntax.

To make a symbol (or label) in the .code section, the syntax is similar to .data but without
the size and initial values:

.code 0x2000 # This means the first instruction
 # will appear at memory address 0x2000

add.16 $2,$2,$3 # Begins at 0x2000

Design Document

 5

loop: # The loop symbol will resolve to 0x2002
li.hi 0xF,$2 # Begins at 0x2002
li.lo 30,$2 # Begins at 0x2003

.include FILE

The include statement does exactly that of any complier: it simply inserts the content of
‘FILE’ into the source file exactly where the line includes. To demonstrate this
functionality, the following is an example should be assembler into the exact same binary
as the two previously given code/data sections:

.include /data_file

.include /code_file

Also note the include directive will inherit the .code section or .data section if one is not
explicitly given in it. For example, the following is equitable to the above.

.data 0x4000

.include /data_file

.code 0x2000

.include /code_file

This functionality makes coding easier if similar data (or code) need to be used in both
system and user memory.

.thread IMM

The .thread statement has no effect unless an assembler macro (explained later) is being
used. It accepts a valid thread number, ideally specifying in which thread the code is
being processed. The .thread statement is processed linearly while evaluating code so if
an .include statement specifies a file which contains a .thread statement, it will overwrite
the value specified by .thread in the calling file.

Contents of code_file:

.code 0x2000
add.16 $2,$2,$3
li.hi 0xF,$2
li.lo 30,$2

Contents of data_file:

.data 0x4000
string_one:0x40=”Name: Tom\n”
integer_one:2=16
integer_two:2=0x10

Contents of code_file:

add.16 $2,$2,$3
li.hi 0xF,$2
li.lo 30,$2

Contents of data_file:

string_one:0x40=”Name: Tom\n”
integer_one:2=16
integer_two:2=0x10

Design Document

 6

Part 3: Psuedo-Instructions

* The lobyte(),hibyte(),addressof() and currentaddress() are assembler functions which
return immediate values at the time of assembly depending on the parameters passed.

Psuedo Instruction Assembly Equivalent Description
la symbol, $register li.lo lobyte(addressof(symbol)),$register

li.hi hibyte(addressof(symbol)),$register
The load address pseudo work is for
loading non-immediate jumps and
memory addresses into code. The
first parameter is the symbol as
explained in the .data or .code
sections and the register is where
to store the address.

lwr symbol, $register li.lo lobyte(addressof(symbol)),$register
li.hi hibyte(addressof(symbol)),$register
lw $register,$register

The load word register pseudo
instruction is used for loading
immediate values stored at the
symbol into the code. The first
parameter is the symbol as
explained in the .data or .code
sections and the register is where
to store the immediate value.

lwr symbol, $register li.lo lobyte(addressof(symbol)),$register
li.hi hibyte(addressof(symbol)),$register
lw $register,$register
lw $register,$register

The load word from pointer pseudo
instruction is used for loading the
at a memory address which is
contained in memory. It is similar
another level of abstraction from
the load word from register
instruction.

li IMM, $register li.lo lobyte(IMM),$register
li.hi hibyte(IMM),$register

The load immediate pseudo
instruction simply loads a two-byte
immediate into a register. It
simplifies cases in which both
halves of the register are being
used (word-mode).

jmp symbol jmpi addressof(symbol) – currentaddress(),COND The jump instructions will assemble
into a jump immediate instruction
using the offset value to the
desired symbol. Offset cannot be
more than 256 or the assembler will
return an error. It will only jump
the COND bit is set in the flag
register.

jal symbol jali addressof(symbol) - currentaddress(),COND The jump and link instructions will
assemble into a jump and link
immediate instruction using the
offset value to the desired symbol.
Offset cannot be more than 256 or
the assembler will return an error.
It will only jump the COND bit is
set in the flag register.

Design Document

 7

Part 4: Data Output and Syntax

All parameters passed to the assembler need to be quoted if they contain spaces. This is
standard for all command line programs in general.

WIMPASM [ISA] [ASM] [MEMLOW] [MEMHIGH] [XES] [CONSOLE] [IMAGE]

ISA: (Input)

The tab-delimited output of WIMP’s ISA in excel.

ASM: (Input)

The assembly file. You can use the .include directive in the ASM file if you wish to
assemble multiple files in one.

MEMLOW: (Output)

A file containing a memory footprint for all code and initialized data for the assembled
ASM file. It will only operate on data in ranges 0x0000 through 0x7FFFF. Note this file
contains lines of 4 bytes of data so all unaligned data is appended with 0xFF values. This
file type, aside from being very readable, is used for ModelSIM and/or other verilog
simulators.

MEMHIGH: (Output)

Same as MEMLOW but for address 0x8000 through 0xFFFF

XES: (Output)

A memory footprint containing all code and initialized data for the assembled ASM file.
Note this file contains lines of 16 bytes so any unfilled bytes are filled with 0xFF values.
Any memory values which address memory above 0x8000 are re-positioned to start at
0x100000 (still relative to the offset at 0x8000). For the WIMP processor, all memory
above 0x8000 is actually on the second chip and the XESS memory loading utility
requires this memory translation to appropriate this.

CONSOLE: (Output)

A file containing an proprietary format for simple debugging of the assembler.

IMAGE: (Input)

A 128 KB initial image in RAW format to be loaded into the video ram.

Design Document

 8

Part 5: Assembler Macros

Assembler macros handle what an operating system might refer to as ‘system calls’.
Macros depend (and assume) specified symbol names and memory values are being
included during the assembly. Most macros are used in conjunction with the .thread
statement. Some macros use other macros and the following table describes each of
these, in order of precedence.

Macro Instruction Description
PASSUP V0,V1,V2…,$T1,T2 Pushes the specified parameters onto a thread's

function stack. The values passed can be
immediate values, a symbol, or a register.

PASSDOWN $R0,$R1,$R2…,$T1,$T2 Pops 'return' values off of a threads function
stack.

PRINT S,$T1,$T2 Prints the null-delimited string located at
SYMBOL.

PRINTR $R,$T1,$T2 Prints the 2 byte value of the register in
hexadecimal format.

MEMCMP S1,S2,V0,$T1,$T2 If V0 is zero, then this function is equilvant
to the C-code of strcmp(SYMBOL1,SYMBOL2).
Otherwise, it is equilvant to
memcmp(SYMBOL1,SYMBOL2,V0). If the comparison
is true, 0 is retruned in $T1.

MAC $R1,$R2,$R3,V0,$T1,$T2 This function does implements a signed version
of the processor's multiply and accumlate
instruction. If V0 is zero, the function
peformes a mac.lo, otherwise a mac.hi. The
value is returned in $R3.

GETCHAR $R1,$T1,$T2 This function is a blocking call which waits
for a character to be typed and stores it in
$R1 before returning.

SEND_TO_VGA S,V0,$T1,$T2 This functions copies 1024 bytes located at the
address of S to the section specified by V0.

Note: In the above table, the following prefixes are used:

R: general register
T: temporary register
V: label, symbol, or immediate
S: symbol

Design Document

 9

WIMP-IDE (WIMP Development Environment)

WIMP-IDE is based on GNU-Emacs Text Editor. It is developed in Emacs Lisp as an
extension.

Some of the key features supported by WIMP-IDE are:

1. Syntax highlighting for instructions and pseudo-instructions
2. Auto-indentation of the source code.
3. Assembling the code using WIMPASM
4. Ability to communicate with XESS tools to perform

a. Upload bit file to FPGA (with current program binary)
b. Clear the LPT port

5. Can start HyperTerminal with any desired pre-saved configuration

Design Document

 10

WIMPTERM (WIMP Terminal Client)

WIMPTERM is a specialized hyper-terminal application designed specifically for the
WIMP processor. The program was written in MFC/C++ and therefore can be run on
any Windows platform.

WIMPTERM easily allows the user to easily load images and binary finals into the
processor. Below in a screenshot of WIMP waiting for the user to drop image into the
lower-right dialog box. This dialog box also displays WIMPTERM status messages such
as “Receiving Command”, “Listening…”, and “Transferring”. Text in the upper left
dialog box is data which has been sent from the SPAT. This dialog box also has been
created to handle new page and backspace bytes as defined in ASCII.

Design Document

 11

After an image is dropped into the into the box, WIMP and WIMPTERM transfer
consecutive sections of the picture. In the image below, the upper half of the picture is
data which has been received back from the processor and has been processed by an edge
detection filter. The lower half of the image is unprocessed.

Design Document

 12

Protocol For Image Transmission: Receiving From PC

Protocol For Image Transmission: Sending From PC
W

IM
P

TE
R

M
W

IM
P

TE
R

M

Design Document

 13

WIMP Software Architecture

The heart of the WIMP system is the WIMP multi-threaded processor that interfaces all
the hardware systems together. The WIMOS kernel manages the hardware and
communicates between the system calls and the hardware. The system calls provide an
interface between the applications and the WIMPOS kernel. They buffer the application
requests that are serviced by the WIMPOS kernel. In addition, they also provide a
command line interface to the user.

Design Document

 14

WIMPOS Kernel

The WIMPOS kernel is a daemon that monitors all the buffers and takes the required
actions to service the buffers. Applications running on different hardware can make the
following requests through the system calls:

 Print to SPAT
 Get a data file from PC
 Send data to PC
 Get data from keyboard
 Load user program memory
 Load user data memory

In addition the WIMPOS kernel services the requests that come through the shell’s
command line interface, handle exceptions, and provide support for interrupts.

The kernel is actually a forever loop that samples all the buffers (listed in the memory
map) and services them in a round robin scheme. The rest of the section discusses the
buffer management and the command line interface provided by WIMPOS kernel.

I/O With Multiple Threads

Each thread has the ability to
independently access system ports for
input and output of data. When only one
thread is running, there is no chance of
simultaneous I/O requests, but when more
than one thread is running, the I/O can
interleave. For example, two threads
attempt to print “AB” to the SPAR.
Assuming they are started at the same
time, the output to the hyper-terminal
output will most likely be “AABB”.
These problems also occur with binary
data trafers. To handle these cases,
WIMPOS uses two daemons to handle
string data and binary file transfers. The
diagram to the right illustrates the
construct of the daemons.

System Thread (0)

THREAD 0
REQUEST

DAEMONS

SHELL
RESPONSE

User Threads (1,2,3)

THREAD 1
REQUEST

THREAD 2
REQUEST

THREAD 3
REQUEST

APPLICATIONS

Design Document

 15

Printing to SPAT

An application in a particular thread writes into an out buffer if it requires an output on
the screen. The OS then samples the buffer, if found non empty, it prints out the
characters in the buffer and clears the buffer. One output buffer is provided for each
thread. The buffer is byte addressable, e.g.

Print “ABCD”

A = address X
B = address X + 1
C = address X + 2
D = address X + 3

where X is the starting address of the buffer. A store into the buffer should be followed
by a null byte being written into the buffer. (This use of null-delimited strings is
common in many operating systems). The following table shows the address map for the
print operation.

For example, say Thread 1 is running the OS kernel, and Thread 2 need to print ABCD.
Thread 2 first checks if data in 8050 is 0. If it not, Thread 2 waits till 8050 is cleared. If
so, ABCD is written into locations 8030, 8031, 8032 and 8033. Finally, thread 2 writes
“4” into location 8050. The OS polls location 8050. If it is non empty (in this case 4), it
writes out data into SPAT from 8030, 8031 and 8032 and 8033. It then clears 8050.

This function’s architecture does not support interleaving strings. For instance, if thread
one wants to print “HELLO” and then “THERE” and thread two is simultaneous
processing the same code, the output would be “HELLOHELLOTHERETHERE”.
WIMPOS relies on the programs to intelligently output status to avoid this issue.

Table 23: Printing to SPAT
 Thread 1 Thread 2 Thread 3 Thread 4

Starting Address 8000 8030 8060 8090
Ending Address 801F 804F 807F 80AF

Buffer Space 32 32 32 32
Buffer Status Address 8020 8050 8080 80B0

Design Document

 16

Reading from keyboard

The keyboard writes into an input buffer stream when ever a character arrives. In
addition, it also writes into the output buffer steam for echo. The operating system then
checks for the status of the buffer streams and takes the required actions.

Table 24: Reading from keyboard
 Thread 1
Starting Address 8002
Ending Address 8021
Buffer Space 32
Buffer Status Address 8001

Example:

Say a key has been pressed. The keyboard driver checks the contents of 80E0. If that is
non zero, the key is dropped. If it was zero, the keyboard driver writes the key into the
input buffer (starting address 80C0) and the output buffer (starting address 8000, for an
echo). It continues to do so till, an enter key has been pressed or 32 bytes have been
entered. In either of the cases, the keyboard driver updates the address 80E0 (input buffer
status) and 8020 (output buffer status).

The operating system polls 8001. If it finds that non-empty, it reads the buffer and clears
the input buffer status.

Passing Parameters To Functions

In a system which has lines of execution and no direct memory addressing scheme, there
is no way to support a single software stack. Therefore, when a thread calls a function it
uses a dedicated area in the memory to send parameters to functions. This memory is a
part of the system memory (8700 – 8FFF) and can be accessed in the program with the
label .

FUNCTION_PARAM_T0 Thread 0
FUNCTION_PARAM_T1 Thread 1
FUNCTION_PARAM_T2 Thread 2
FUNCTION_PARAM_T3 Thread 3

The functions can return values to the calling function through the same set of memory
locations. The assembler macros PASSUP and PASSDOWN automate the passing of
values onto the parameter function stacks.

Design Document

 17

Getting a file from the PC

Applications are not restricted to the memory provided on the XESS board to store their
data. Applications can request a file from the PC that is connected to WIMP through the
serial port. WIMPOS acts as an interface between the application requesting the file and
the PC. The following illustrates the process of requesting a file from the PC:

Application requests a file from the PC

The application running on a thread places the starting address of the file name, and
starting address where the data in the file should be stored in the memory locations
specified in WIMP’s memory map. It then makes the buffer status as 1 indicating to
WIMPOS that it has placed a request.

OS Services the request

WIMPOS comes around to the request, samples the buffer status and starts servicing the
request. It calls the receive_file function that sends a request to the PC’s monitor program
for the file. Once the PC starts transmitting the file, the receive_file gets the file and
places it in the memory location requested by the application. It then sets the buffer status
to the value 2 indicating that the request has been completed.

Application acknowledges the completion of the request

The application then sets the buffer status to 0 indicating that it has acknowledged the
completion and another request can be placed.

There is a buffer space provided for every thread. This way there is no contention for
buffer space between the threads.

Design Document

 18

Sending a binary file to PC

The system supports sending a binary file to the PC through the serial port. This
WIMPOS provides the interface between the application that needs to send the data and
the serial port on the board. The following illustrates the process of sending a file to the
PC:

Application generates a request to send the file to the PC

The application samples the buffer status (the addresses are provided in the memory map)
to see if it is 0. If not, it waits till the buffer status is 0. Once the buffer status is 0, the
application places the starting address of the binary file be sent, size of the binary file in
bytes, and the starting address of the string that defines the file name. It then sets the
buffer status to 1 indicating a request for file transfer.

WIMPOS services the request

Once WIMPOS checks the request, it services the request by calling the send_binary_file
function. After the file has been successfully transmitted, the WIMOPS sets the buffer
status back to 0 indicating the successful completion of the request.

Sending a file to the PC is a 2-step process unlike receiving a file that is 3-step process.
There is no need for the application to wait for the data to be sent to the PC.

WIMP communicates with the PC through the serial port and the WIMPTERM
application that runs on the PC. This interface allows:

• Loading data from PC to board
• Loading program from the PC to the board
• Sending a binary file from the PC to the board
• Sending a binary file from the board to the PC
• Sending a command to the PC

The command sent from WIMP to the PC begins with 0x05, 0x10, 0x11.

Applications requesting data from keyboard

Applications that need data from the keyboard call the system calls get_ch and get_string.
These system calls in turn place requests on the buffer that is serviced by WIMPOS
kernel. The following illustrates the process of getting an input from the keyboard:

Application calls the system call get_ch or get_string

The system calls wait on the input buffer.

Design Document

 19

Servicing shell commands

The commands that arrive from keyboard at the shell prompt are registered into the buffer
(address present in WIMP’s memory map) when the enter key is detected. When the
kernel comes around and sees the buffer is non-empty, it reads the buffer and services the
command. Once the command is serviced, it clears the buffer indicating that the next
command can be placed into the buffer. Currently, commands arriving from the prompt
are not queued. The following are valid commands used by the WIMP shell:

Command Description
echo Set keyboard echo-mode to 1

noecho Set keyboard echo-mode to 0

cls Send new page command to SPAT

init1 Start code at symbol THREAD_1

init2 Start code at symbol THREAD_2

init3 Start code at symbol THREAD_3

loadprog Load user code/data from WIMPTERM

loadcode Load user code from WIMPTERM

loaddata Load user data from WIMPTERM

Updating The VGA

 WIMP’s four image processing programs require processing of image blocks because
full images are larger than available memory. Because the VGA interface does not
support a pixel addressing mode, the VGA RAM is treated as separately addressing linear
arrays. The below look-up tables was using to locate the starting point of the array. The
table is split between the two VGA memory segments. Using these addresses, 256 must
be added to the current address to locate the next ‘line’ in the block image. The image
blocks where chosen to be 32 x 32 bytes. This number was the greatest common divisor
the height and width.

 0 1 2 3 4 5 6 7
0 0x0000 0x0020 0x0040 0x0060 0x0080 0x00A0 0x00C0 0x00E0
1 0x2000 0x2020 0x2040 0x2060 0x2080 0x20A0 0x20C0 0x20E0
2 0x4000 0x4020 0x4040 0x4060 0x4080 0x40A0 0x40C0 0x40E0
3 0x6000 0x6020 0x6040 0x6060 0x6080 0x60A0 0x60C0 0x60E0
4 0x8000 0x8020 0x8040 0x8060 0x8080 0x80A0 0x80C0 0x80E0
5 0xA000 0xA020 0xA040 0xA060 0xA080 0xA0A0 0xA0C0 0xA0E0
6 0xC000 0xC020 0xC040 0xC060 0xC080 0xC0A0 0xC0C0 0xC0E0
7 0xE000 0xE020 0xE040 0xE060 0xE080 0xE0A0 0xE0C0 0xE0E0
8 0x0000 0x0020 0x0040 0x0060 0x0080 0x00A0 0x00C0 0x00E0
9 0x2000 0x2020 0x2040 0x2060 0x2080 0x20A0 0x20C0 0x20E0
10 0x4000 0x4020 0x4040 0x4060 0x4080 0x40A0 0x40C0 0x40E0
11 0x6000 0x6020 0x6040 0x6060 0x6080 0x60A0 0x60C0 0x60E0
12 0x8000 0x8020 0x8040 0x8060 0x8080 0x80A0 0x80C0 0x80E0
13 0xA000 0xA020 0xA040 0xA060 0xA080 0xA0A0 0xA0C0 0xA0E0
14 0xC000 0xC020 0xC040 0xC060 0xC080 0xC0A0 0xC0C0 0xC0E0

Design Document

 20

Image Processing Applications

WIMP is designed to exploit the inherent parallelism present in multi-media applications.
T0 is the system daemon that starts off an application in thread 1. Thread 1 initializes the
application variables and then starts off thread 2 and thread 3. The three threads work on
the image simultaneously. The threads synchronize and merge on regular basis, once
every row of the image in this case.

Thresholding

This application reads an input image and compares every pixel to a threshold value. If
the pixel value is greater than the threshold value, the pixel is made white, otherwise, it is
made black. The user starts thread one (T1) from WIMPTERM to start the program. The
application will print out eight different threshold values as options that can be used in
comparing the pixels of the image. The getchar function will get the input to the
WIMPTERM and will put the selected threshold value into memory. T1 will now
initialize Thread 2 (T2) and Thread three (T3). T1 will send a request to the OS to get a
block of the pixel, which contains 1024 bytes (32x32 pixels). Each thread will process
two pixels at a time by comparing the pixel to the threshold value, and writing the result
back into memory and VRAM. If T1 starts at address 0x9100, then T2 starts at 0x9002,
and T3 starts at 0x9004. The program counter (PC) will be incremented by six each
cycle so that the threads run through the image block correctly. At the end of the block,
T2 and T3 will wait for T1 to send the processed block back to the computer and to
VRAM. Then the image block is updated on the monitor using VGA and WIMPTERM.
After the data is refreshed, the program will fetch another image block. This loop will
continue until the image has been completely processed. Figure 3.1 below shows this
process.

Threshold 0xAA Threshold 0x88 Threshold 0x66

Design Document

 21

Figure 3.1: Bit Plane Slicing and Thresholding

Design Document

 22

Bit Plane Slicing

This application reads an input image
and ANDS every pixel to a bit slice
value. If the result is equal to zero, the
pixel is made white; otherwise, it is
made black. The following explains
the mapping of the algorithm to the
processor architecture:

The user starts thread one (T1) from WIMPTERM to start the program. The application
will print out the eight different bit slice values as options that can be used to AND with
the pixels of the image. Table 3.1 below shows all of the bit slice values that can be
chosen. The getchar function will get the input to the WIMPTERM and will put the
selected threshold value into memory. T1 will now initialize Thread 2 (T2) and Thread
three (T3). T1 will send a request to the OS to get a block of the pixel, which contains
1024 bytes (32x32 pixels). Each thread will process two pixels at a time by comparing
the pixel to the threshold value, and writing the result back into memory and VRAM. If
T1 starts at address 0x9100, then T2 starts at 0x9002, and T3 starts at 0x9004. The
program counter (PC) will be incremented by six each cycle so that the threads run
through the image block correctly. At the end of the block, T2 and T3 will wait for T1 to
send the processed block back to the computer and to VRAM. Then the image block is
updated on the monitor using VGA and WIMPTERM. After the data is refreshed, the
program will fetch another image block. This loop will continue until the image has been
completely processed. Figure 3.1 above shows this process.

Bit Slice Bit Slice Value
Bit slice 0 0000 0001
Bit slice 1 0000 0010
Bit slice 2 0000 0100
Bit slice 3 0000 1000
Bit slice 4 0001 0000
Bit slice 5 0010 0000
Bit slice 6 0100 0000
Bit slice 7 1000 0000

Bit Slice 0 Bit Slice 3 Bit Slice 6

Design Document

 23

Edge Detection

The second application is a little more complex than image thresholding that involves
filtering an image to detect the edges. This simple image filter sweeps a 3x3 kernel across
the image replacing every pixel with a value that is the weighted sum of the neighboring
pixels.

The application first pads 0’s around the image to take care of the border cases. The
illustration depicts the data input to the calculation of a single pixel. The kernel window
translates across every pixel of the image and calculates a weighted sum between its
values and the images’ values which it covers. The sum is calculated in the following
manner, given the image ‘P’ and kernel window ‘K’ have indexes relative to the
window’s center.

() ()∑ ∑
−= −=

++=
1

1

1

1
,,),(

i j
jyixPjiKyxP

The new value of the pixel is
stored in a new location so that it
does not interfere with the other
computations where the old value
of ‘P’ needs to be used. The
edge detection program has been
created in such a way that any
spatial filter can be applied by
images. The current ones
implemented have the following
windows:

3x3 Kernel Winow

Image

Design Document

 24

-3 -3 5

-3 0 5

-3 -3 5

1 -2 1

-2 4 -2

1 -2 1

-1 0 1

-2 0 2

-1 0 1

1 1 1

1 -8 1

1 1 1

-1 -2 -1

0 0 0

1 2 1

Kirch8 Neighbors

Sobel Vertical Sobel Horizontal

Design Document

 25

START

Start
Thread 1

Fetch an Image
Block

Subword Parallel
Operations

1 word = 2 pixels

Y

Compute Window
Weight

Assign Rows X, Y
Z to different

threads

Process Row Y Process Row ZProcess Row X

Start T2Start T3

Wait and Merge with T1Wait and Merge with T1

Block
Complete?

All Blocks
Processed?

STOP

Assign X=0, Y=1,
Z=2

Increment X, Y, Z

Y

N

N

Design Document

 26

Time Redundant Fault Tolerant Applications

Time redundant fault tolerant computing is another application domain that fits into the
multithreading environment. The idea is to run the application that requires high fault
tolerant standards on different threads and then compare the results. If the results are the
same, the program execution was successful. On the other hand, if the results don’t
match, the program execution was not correct. The aim is just to detect the intermittent
fault and re-execute the program when such a fault is detected.

WIMP supports fault tolerant computing as described in the micro-architectural manual.
Stores are used as checkpoints in the program that requires fault tolerance. The
instruction SWFT tracks the stores by writing the store values into a FIFO. The output
ports 4 and 5 are shorted to input ports 4 and 5 respectively to allow a monitor program to
track the and compare the stores. In addition, writing into output port 8 interrupts threads
running the applications whenever required.

A simple scheme that requires the assistance of a compiler is to generate two copies of
the application program where the store addresses are offset. The program may need to
be profiled to know store addresses ahead of time. The two copies of the programs are
executed on different threads completely before the monitor program takes over that
checks all the stores that have been committed. If the monitor program finds a
discrepancy, the application program is restarted. This scheme has a very slow response
time since the programs have to be completed. Since WIMP supports tracking store
values through the FIFO, this scheme is altered to decrease the response time to detect the
fault.

In this application domain, we test two implementations of a time redundant fault tolerant
scheme. The first scheme does not use ft support provided by the SWFT instruction. Only
the multithreading capabilities of WIMP are used to make the program fault tolerant. In
this scheme, two copies of the same program are executed with a small delay on two
different threads. The programs use a modified form of store called “safe store” (a
software wrapper around a regular store) as check points. The safe store writes the check
point value into a defined memory location. The program blocks at this store till this
checkpoint value has been read by the monitor program for comparison. Once the values
have been read, the program continues regular operation till the next check point has been
reached. This is a very slow implementation since the safe stores are blocking; and the
program execution will not proceed until the check points have been read by the monitor
program. If the values read are not the same, the monitor thread interrupts the program
threads and restarts them. The general methodology using this scheme is shown in figure
FT(A).

The second scheme uses the SWFT instruction that tracks the stores by writing the store
values into the FIFO the same time store is committed. A second copy of the program is
started with a latency not exceeding the FIFO depth, which is 256 in case of WIMP. The
two copies write into the different FIFOs while a third thread continuously monitors the

Design Document

 27

FIFO’s and compares the values. If the values popped from the two FIFO’s are not the
same, the thread interrupts the program threads and restarts them. This scheme executes
faster since the check point stores are not blocking. Fig FT(B) shows the control flow in
this implementation scheme.

Fig. FT(A): Implementing fault tolerance without using SWFT

The fault tolerant scheme covers intermittent faults for

• Data flow
• Control flow

Data flow check is implemented easily using the schemes mentioned above. The same
schemes can be used for control flow check by inducing the SWFT instruction at the end
of every critical branch target. The SWFT should store/write a checksum that is
computed using the previous control flow checkpoints.

A random number generator is used as a sample program to test the fault tolerant
schemes in WIMP. A single fault is injected into the program using a global flag that is
set to start off with. The flag is referred once to change a store value; and then it is
cleared. The two copies are restarted following fault detection that find the global flag
cleared. This time, the fault is not injected and the programs complete successfully.

Design Document

 28

START

Begin Monitor
Program

Begin Copy 1Begin Copy 2

EqualKill Copy 1
Kill Copy 2

Program
execution

done?

FIFO’s

SWFT SWFT

Y

N

N

Y

STOP

Fig FT(B): Implementing fault tolerance using SWFT

Following table shows the execution times of the program:

a) Without the fault tolerance scheme where the program is executed on a single
thread

b) With the software fault tolerant scheme that does not use the SWFT support (SW
Scheme)

c) With the fault tolerant scheme that uses the SWFT support (HW Scheme)

Design Document

 29

Program Length SW Scheme HW Scheme Original Program
16 numbers 1124 983 293

256 Numbers 22724 2687 1805

Execution times of program

The numbers indicate the cycles taken by the program to execute the program. Thus this
number is the actual time required to execute the program. As we can see, with little
hardware support in the form of SWFT instruction, the overhead can be reduced to large
extent. The numbers in the hardware scheme are also little bit larger as they include the
error injection overhead. It is also evident that, as the program become larger and
complex the overhead of monitor (comparator) program also becomes relatively less, as
this overhead is constant and does not depend on length fault tolerant application.

