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Assembler 
 
The assembler for WIMP is very versatile. It supports symbols and multiple address code 
mappings.  To anticipate design changes in the instruction set, it gains its instruction 
knowledge from the instruction documentation itself.  The assembler is written in C++ 
and is compiled into one executable for simplicity. 
 
Part 1: Numerical Addressing & Comments 
 
The WIMPy assembler includes support for strings, hexadecimal integers and decimal 
integers.  Any statement requiring an integer input will parse the integer for a ‘0x’ 
precedent.  If the number is preceded with a ‘0x’, the following decimal numbers will be 
treated as base 16.  If it is not present, base 10 will be assumed.  For example, 
 
Using hexadecimal: 0xF 
Equivalent decimal: 15 
 
Strings can only be used in the .data section, as elaborated below.  Strings are identified 
by being surrounded with quotation marks.  They can contain three useful escape 
characters: \n, \t, \0.  The \n will evaluate to the byte value for a ‘newline’. The \t will 
evaluate to the byte value for a tab. The \0 will evaluate to a null byte value (0), which 
may be useful for a produced to know when the string has ended. 
 
Comments are indicated by the pound symbol: #   There is no multi-line comment 
indicator, each line must be preceded with #. 
 
Part 2: Coding Sections 
 
The WIMP assembler includes three section directives: code, section, include.  The 
‘include’ statement is actually a directive, but it must be used in conjunction with a 
section. 
 
.data ADDR 
 
The .data section indicates any following non-comment lines will be interpreted as data 
variables, which has a special syntax.  The ADDR section specifies where the data 
section begins.  A .data section is NOT needed for each variable, as multiple variables’ 
addresses are calculated by ADDR + sizeof(previous_varabiles). For example: 
 

.data 0x4000    # This means the first variable 
                # will appear at memory address 0x4000 
string_one:0x40 # This variable begins at 0x4000 
integer_one:2   # This variable appears at 0x4042 
integer_two:2   # This variable appears at 0x4044 
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Again notice the interchangeability of hexadecimal and decimal integers.  One can also 
indicate an initial value for a variable by following the byte size parameter with ‘=’.  For 
example: 
 

.data 0x4000  
string_one:0x40=”Name: Tom\n” 
integer_one:2=16 
integer_two:2=0x10 

 
Giving variable initial variables will allow the assembler to output a memory file for the 
XESS board with these values.  Please note if more than two bytes is specified is 
‘initialized’ to an integer values, the assembler will put the value into the first two bytes.   
 
Aside from strings, the assembler can also load binary files when prefixed with a ‘<’ 
character.  For instance, the following code load the binary file ‘image16x16.bin’ into the 
address 0x5000: 
 

.data 0x5000  
string_one:256=<images/image16x16.bin 

 
If the file is less than the data allocation the values will be filled with don’t cares or 0xFF, 
depending on the file output.  This is also the case for over-allocated strings. 
 
.code ADDR 
 
Similar to data, the .code statement takes an address which indicates the first instruction it 
encounters is at that addresses.  Following memory location of following addresses is 
calculates as ADDR + 2*number_of_previous_instructions.  There are three main types 
of instructions which gain more specific meaning via the instruction file, which is a tab 
delimited output of WIMP’s ISA Excel file.  The details of the parsing need not be 
discussed, but it is useful to know the assembler will check to see if a parameter begins 
with a ‘$’ if the instruction require a register.  For example: 
 

.code 0x2000  # This means the first instruction 
                 # will appear at memory address 0x2000 
add.16 $2,$2,$3  # Begins at 0x2000 
li.hi 0xF,$2     # Begins at 0x2002 
li.lo 30,$2      # Begins at 0x2004 

 
It is also legal to replace the comma between parameters with a space.  Thusly ‘add.16 $2 
$2 $2’ would also be legal syntax. 
 
To make a symbol (or label) in the .code section, the syntax is similar to .data but without 
the size and initial values: 
 

.code 0x2000    # This means the first instruction 
          # will appear at memory address 0x2000 

add.16 $2,$2,$3 # Begins at 0x2000 
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loop:           # The loop symbol will resolve to 0x2002 
li.hi 0xF,$2    # Begins at 0x2002 
li.lo 30,$2     # Begins at 0x2003 

 
.include FILE 
 
The include statement does exactly that of any complier: it simply inserts the content of 
‘FILE’ into the source file exactly where the line includes.  To demonstrate this 
functionality, the following is an example should be assembler into the exact same binary 
as the two previously given code/data sections: 
 
 

.include /data_file 

.include /code_file 
 
 
 
 
 
 
Also note the include directive will inherit the .code section or .data section if one is not 
explicitly given in it. For example, the following is equitable to the above. 
 

.data 0x4000  

.include /data_file 

.code 0x2000 

.include /code_file 
 
 
 
This functionality makes coding easier if similar data (or code) need to be used in both 
system and user memory. 
 
.thread IMM 
 
The .thread statement has no effect unless an assembler macro (explained later) is being 
used.  It accepts a valid thread number, ideally specifying in which thread the code is 
being processed.  The .thread statement is processed linearly while evaluating code so if 
an .include statement specifies a file which contains a .thread statement, it will overwrite 
the value specified by .thread in the calling file. 

Contents of code_file: 
 
.code 0x2000 
add.16 $2,$2,$3 
li.hi 0xF,$2 
li.lo 30,$2 

Contents of data_file: 
 
.data 0x4000  
string_one:0x40=”Name: Tom\n” 
integer_one:2=16 
integer_two:2=0x10 

Contents of code_file: 
 
add.16 $2,$2,$3 
li.hi 0xF,$2 
li.lo 30,$2 

 

Contents of data_file: 
 
string_one:0x40=”Name: Tom\n” 
integer_one:2=16 
integer_two:2=0x10 
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Part 3: Psuedo-Instructions 
 

 
* The lobyte(),hibyte(),addressof() and currentaddress() are assembler functions which 
return immediate values at the time of assembly depending on the parameters passed. 

Psuedo Instruction Assembly Equivalent Description 
la symbol, $register li.lo lobyte(addressof(symbol)),$register 

li.hi hibyte(addressof(symbol)),$register 
The load address pseudo work is for 
loading non-immediate jumps and 
memory addresses into code.  The 
first parameter is the symbol as 
explained in the .data or .code 
sections and the register is where 
to store the address.   

lwr symbol, $register li.lo lobyte(addressof(symbol)),$register 
li.hi hibyte(addressof(symbol)),$register 
lw $register,$register 

The load word register pseudo 
instruction is used for loading 
immediate values stored at the 
symbol into the code.  The first 
parameter is the symbol as 
explained in the .data or .code 
sections and the register is where 
to store the immediate value.   

lwr symbol, $register li.lo lobyte(addressof(symbol)),$register 
li.hi hibyte(addressof(symbol)),$register 
lw $register,$register 
lw $register,$register 

The load word from pointer pseudo 
instruction is used for loading the 
at a memory address which is 
contained in memory.  It is similar 
another level of abstraction from 
the load word from register 
instruction. 

li IMM, $register li.lo lobyte(IMM),$register 
li.hi hibyte(IMM),$register 

The load immediate pseudo 
instruction simply loads a two-byte 
immediate into a register.  It 
simplifies cases in which both 
halves of the register are being 
used (word-mode). 

jmp symbol jmpi addressof(symbol) – currentaddress(),COND The jump instructions will assemble 
into a jump immediate instruction 
using the offset value to the 
desired symbol.  Offset cannot be 
more than 256 or the assembler will 
return an error.  It will only jump 
the COND bit is set in the flag 
register. 

jal symbol jali addressof(symbol) - currentaddress(),COND The jump and link instructions will 
assemble into a jump and link 
immediate instruction using the 
offset value to the desired symbol.  
Offset cannot be more than 256 or 
the assembler will return an error.  
It will only jump the COND bit is 
set in the flag register. 
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Part 4: Data Output and Syntax 
 
All parameters passed to the assembler need to be quoted if they contain spaces.  This is 
standard for all command line programs in general. 
 
WIMPASM [ISA] [ASM] [MEMLOW] [MEMHIGH] [XES] [CONSOLE] [IMAGE] 
 
ISA:  (Input) 
 
The tab-delimited output of WIMP’s ISA in excel.  
 
ASM:  (Input) 
 
The assembly file.  You can use the .include directive in the ASM file if you wish to 
assemble multiple files in one. 
 
MEMLOW: (Output) 
 
A file containing a memory footprint for all code and initialized data for the assembled 
ASM file.  It will only operate on data in ranges 0x0000 through 0x7FFFF. Note this file 
contains lines of 4 bytes of data so all unaligned data is appended with 0xFF values.  This 
file type, aside from being very readable, is used for ModelSIM and/or other verilog 
simulators.  
 
MEMHIGH: (Output) 
 
Same as MEMLOW but for address 0x8000 through 0xFFFF 
 
XES:  (Output) 
 
A memory footprint containing all code and initialized data for the assembled ASM file.  
Note this file contains lines of 16 bytes so any unfilled bytes are filled with 0xFF values.  
Any memory values which address memory above 0x8000 are re-positioned to start at 
0x100000 (still relative to the offset at 0x8000).  For the WIMP processor, all memory 
above 0x8000 is actually on the second chip and the XESS memory loading utility 
requires this memory translation to appropriate this.   
 
CONSOLE:  (Output) 
 
A file containing an proprietary format for simple debugging of the assembler.   
 
IMAGE: (Input) 
 
A 128 KB initial image in RAW format to be loaded into the video ram. 
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Part 5: Assembler Macros 
  
Assembler macros handle what an operating system might refer to as ‘system calls’.  
Macros depend (and assume) specified symbol names and memory values  are being 
included during the assembly.  Most macros are used in conjunction with the .thread 
statement.  Some macros use other macros and the following table describes each of 
these, in order of precedence.    
 
Macro Instruction Description 
PASSUP V0,V1,V2…,$T1,T2 Pushes the specified parameters onto a thread's 

function stack. The values passed can be 
immediate values, a symbol, or a register. 

PASSDOWN $R0,$R1,$R2…,$T1,$T2 Pops 'return' values off of a threads function 
stack.  

PRINT S,$T1,$T2 Prints the null-delimited string located at 
SYMBOL. 

PRINTR $R,$T1,$T2 Prints the 2 byte value of the register in 
hexadecimal format. 

MEMCMP S1,S2,V0,$T1,$T2 If V0 is zero, then this function is equilvant 
to the C-code of strcmp(SYMBOL1,SYMBOL2).  
Otherwise, it is equilvant to  
memcmp(SYMBOL1,SYMBOL2,V0).  If the comparison 
is true, 0 is retruned in $T1. 

MAC $R1,$R2,$R3,V0,$T1,$T2 This function does implements a signed version 
of the processor's multiply and accumlate 
instruction.  If V0 is zero, the function 
peformes a mac.lo, otherwise a mac.hi.  The 
value is returned in $R3. 

GETCHAR $R1,$T1,$T2 This function is a blocking call which waits 
for a character to be typed and stores it in 
$R1 before returning. 

SEND_TO_VGA S,V0,$T1,$T2 This functions copies 1024 bytes located at the 
address of S to the section specified by V0. 

 
Note: In the above table, the following prefixes are used: 
 
R: general register 
T: temporary register 
V: label, symbol, or immediate 
S: symbol 
 



Design Document   

 9

WIMP-IDE (WIMP Development Environment) 
 
WIMP-IDE is based on GNU-Emacs Text Editor. It is developed in Emacs Lisp as an 
extension. 
 
Some of the key features supported by WIMP-IDE are: 

1. Syntax highlighting for instructions and pseudo-instructions 
2. Auto-indentation of the source code. 
3. Assembling the code using WIMPASM 
4. Ability to communicate with XESS tools to perform 

a. Upload bit file to FPGA (with current program binary) 
b. Clear the LPT port 

5. Can start HyperTerminal with any desired pre-saved configuration 
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WIMPTERM (WIMP Terminal Client) 
 
WIMPTERM is a specialized hyper-terminal application designed specifically for the 
WIMP processor.  The program was written in MFC/C++ and therefore can be run on 
any Windows platform.   
 
WIMPTERM easily allows the user to easily load images and binary finals into the 
processor.  Below in a screenshot of WIMP waiting for the user to drop image into the 
lower-right dialog box.  This dialog box also displays WIMPTERM status messages such 
as “Receiving Command”, “Listening…”, and “Transferring”. Text in the upper left 
dialog box is data which has been sent from the SPAT.  This dialog box also has been 
created to handle new page and backspace bytes as defined in ASCII. 
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After an image is dropped into the into the box, WIMP and WIMPTERM transfer 
consecutive sections of the picture.  In the image below, the upper half of the picture is 
data which has been received back from the processor and has been processed by an edge 
detection filter.  The lower half of the image is unprocessed. 
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Protocol For Image Transmission: Receiving From PC 
 

 
 
 

Protocol For Image Transmission: Sending From PC  
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WIMP Software Architecture 
 
 

 
 
 
The heart of the WIMP system is the WIMP multi-threaded processor that interfaces all 
the hardware systems together. The WIMOS kernel manages the hardware and 
communicates between the system calls and the hardware. The system calls provide an 
interface between the applications and the WIMPOS kernel. They buffer the application 
requests that are serviced by the WIMPOS kernel. In addition, they also provide a 
command line interface to the user.  



Design Document   

 14

 

WIMPOS Kernel 
 
The WIMPOS kernel is a daemon that monitors all the buffers and takes the required 
actions to service the buffers. Applications running on different hardware can make the 
following requests through the system calls: 
 

 Print to SPAT 
 Get a data file from PC 
 Send data to PC 
 Get data from keyboard 
 Load user program memory 
 Load user data memory 

 
In addition the WIMPOS kernel services the requests that come through the shell’s 
command line interface, handle exceptions, and provide support for interrupts. 
 
The kernel is actually a forever loop that samples all the buffers (listed in the memory 
map) and services them in a round robin scheme. The rest of the section discusses the 
buffer management and the command line interface provided by WIMPOS kernel. 

I/O With Multiple Threads 
 
Each thread has the ability to 
independently access system ports for 
input and output of data.  When only one 
thread is running, there is no chance of 
simultaneous I/O requests, but when more 
than one thread is running, the I/O can 
interleave.  For example, two threads 
attempt to print “AB” to the SPAR.  
Assuming they are started at the same 
time, the output to the hyper-terminal 
output will most likely be “AABB”.  
These problems also occur with binary 
data trafers.  To handle these cases, 
WIMPOS uses two daemons to handle 
string data and binary file transfers.  The 
diagram to the right illustrates the 
construct of the daemons. 

 

System Thread (0)

THREAD 0
REQUEST

DAEMONS

SHELL
RESPONSE

User Threads (1,2,3)

THREAD 1
REQUEST

THREAD 2
REQUEST

THREAD 3
REQUEST

APPLICATIONS



Design Document   

 15

Printing to SPAT 
 
An application in a particular thread writes into an out buffer if it requires an output on 
the screen. The OS then samples the buffer, if found non empty, it prints out the 
characters in the buffer and clears the buffer. One output buffer is provided for each 
thread. The buffer is byte addressable, e.g. 
 
Print “ABCD” 
 
A = address X 
B = address X + 1 
C = address X + 2 
D = address X + 3 
 
where X is the starting address of the buffer. A store into the buffer should be followed 
by a null byte being written into the buffer.  (This use of null-delimited strings is 
common in many operating systems). The following table shows the address map for the 
print operation. 
 
 
 
 
 
 
 
 
 
 
For example, say Thread 1 is running the OS kernel, and Thread 2 need to print ABCD. 
Thread 2 first checks if data in 8050 is 0. If it not, Thread 2 waits till 8050 is cleared. If 
so, ABCD is written into locations 8030, 8031, 8032 and 8033. Finally, thread 2 writes 
“4” into location 8050.  The OS polls location 8050. If it is non empty (in this case 4), it 
writes out data into SPAT from 8030, 8031 and 8032 and 8033. It then clears 8050. 
 
This function’s architecture does not support interleaving strings.  For instance, if thread 
one wants to print “HELLO” and then “THERE” and thread two is simultaneous 
processing the same code, the output would be “HELLOHELLOTHERETHERE”.   
WIMPOS relies on the programs to intelligently output status to avoid this issue.  
 

Table 23: Printing to SPAT 
 Thread 1 Thread 2 Thread 3 Thread 4 

Starting Address 8000 8030 8060 8090 
Ending Address 801F 804F 807F 80AF 

Buffer Space 32 32 32 32 
Buffer Status Address 8020 8050 8080 80B0 
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Reading from keyboard 
 
The keyboard writes into an input buffer stream when ever a character arrives. In 
addition, it also writes into the output buffer steam for echo. The operating system then 
checks for the status of the buffer streams and takes the required actions.  
 

Table 24: Reading from keyboard 
 Thread 1
Starting Address 8002 
Ending Address 8021 
Buffer Space 32 
Buffer Status Address 8001 

 
Example: 
 
Say a key has been pressed. The keyboard driver checks the contents of 80E0. If that is 
non zero, the key is dropped. If it was zero, the keyboard driver writes the key into the 
input buffer (starting address 80C0) and the output buffer (starting address 8000, for an 
echo). It continues to do so till, an enter key has been pressed or 32 bytes have been 
entered. In either of the cases, the keyboard driver updates the address 80E0 (input buffer 
status) and 8020 (output buffer status).  
 
The operating system polls 8001. If it finds that non-empty, it reads the buffer and clears 
the input buffer status.  

Passing Parameters To Functions 
 
In a system which has lines of execution and no direct memory addressing scheme, there 
is no way to support a single software stack.  Therefore, when a thread calls a function it 
uses a dedicated area in the memory to send parameters to functions. This memory is a 
part of the system memory (8700 – 8FFF) and can be accessed in the program with the 
label . 
 
FUNCTION_PARAM_T0  Thread 0 
FUNCTION_PARAM_T1  Thread 1 
FUNCTION_PARAM_T2  Thread 2 
FUNCTION_PARAM_T3  Thread 3 
 
The functions can return values to the calling function through the same set of memory 
locations.  The assembler macros PASSUP and PASSDOWN automate the passing of 
values onto the parameter function stacks. 
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Getting a file from the PC 
 
Applications are not restricted to the memory provided on the XESS board to store their 
data. Applications can request a file from the PC that is connected to WIMP through the 
serial port. WIMPOS acts as an interface between the application requesting the file and 
the PC. The following illustrates the process of requesting a file from the PC: 
 
Application requests a file from the PC 
 
The application running on a thread places the starting address of the file name, and 
starting address where the data in the file should be stored in the memory locations 
specified in WIMP’s memory map. It then makes the buffer status as 1 indicating to 
WIMPOS that it has placed a request. 
 
OS Services the request 
 
WIMPOS comes around to the request, samples the buffer status and starts servicing the 
request. It calls the receive_file function that sends a request to the PC’s monitor program 
for the file. Once the PC starts transmitting the file, the receive_file gets the file and 
places it in the memory location requested by the application. It then sets the buffer status 
to the value 2 indicating that the request has been completed.  
 
Application acknowledges the completion of the request 
 
The application then sets the buffer status to 0 indicating that it has acknowledged the 
completion and another request can be placed. 
 
There is a buffer space provided for every thread. This way there is no contention for 
buffer space between the threads.  
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Sending a binary file to PC 
 
The system supports sending a binary file to the PC through the serial port. This 
WIMPOS provides the interface between the application that needs to send the data and 
the serial port on the board. The following illustrates the process of sending a file to the 
PC: 
 
Application generates a request to send the file to the PC 
 
The application samples the buffer status (the addresses are provided in the memory map) 
to see if it is 0. If not, it waits till the buffer status is 0. Once the buffer status is 0, the 
application places the starting address of the binary file be sent, size of the binary file in 
bytes, and the starting address of the string that defines the file name. It then sets the 
buffer status to 1 indicating a request for file transfer. 
 
WIMPOS services the request 
 
Once WIMPOS checks the request, it services the request by calling the send_binary_file 
function. After the file has been successfully transmitted, the WIMOPS sets the buffer 
status back to 0 indicating the successful completion of the request.  
 
Sending a file to the PC is a 2-step process unlike receiving a file that is 3-step process. 
There is no need for the application to wait for the data to be sent to the PC. 
 
WIMP communicates with the PC through the serial port and the WIMPTERM 
application that runs on the PC. This interface allows: 
 

• Loading data from PC to board 
• Loading program from the PC to the board 
• Sending a binary file from the PC to the board 
• Sending a binary file from the board to the PC 
• Sending a command to the PC 

 
The command sent from WIMP to the PC begins with 0x05, 0x10, 0x11.  
 
Applications requesting data from keyboard 
 
Applications that need data from the keyboard call the system calls get_ch and get_string. 
These system calls in turn place requests on the buffer that is serviced by WIMPOS 
kernel. The following illustrates the process of getting an input from the keyboard: 
 
Application calls the system call get_ch or get_string 
 
The system calls wait on the input buffer.  
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Servicing shell commands 
 
The commands that arrive from keyboard at the shell prompt are registered into the buffer 
(address present in WIMP’s memory map) when the enter key is detected. When the 
kernel comes around and sees the buffer is non-empty, it reads the buffer and services the 
command. Once the command is serviced, it clears the buffer indicating that the next 
command can be placed into the buffer. Currently, commands arriving from the prompt 
are not queued.   The following are valid commands used by the WIMP shell: 
 

Command Description 
echo Set keyboard echo-mode to 1 

noecho Set keyboard echo-mode to 0 

cls Send new page command to SPAT 

init1 Start code at symbol THREAD_1 

init2 Start code at symbol THREAD_2 

init3 Start code at symbol THREAD_3 

loadprog Load user code/data from WIMPTERM 

loadcode Load user code from WIMPTERM 

loaddata Load user data from WIMPTERM 

 

Updating The VGA 
 
 WIMP’s four image processing programs require processing of image blocks because 
full images are larger than available memory.  Because the VGA interface does not 
support a pixel addressing mode, the VGA RAM is treated as separately addressing linear 
arrays.  The below look-up tables was using to locate the starting point of the array.  The 
table is split between the two VGA memory segments.  Using these addresses, 256 must 
be added to the current address to locate the next ‘line’ in the block image.  The image 
blocks where chosen to be 32 x 32 bytes.  This number was the greatest common divisor 
the height and width. 
 

 
 

  0 1 2 3 4 5 6 7 
0 0x0000 0x0020 0x0040 0x0060 0x0080 0x00A0 0x00C0 0x00E0 
1 0x2000 0x2020 0x2040 0x2060 0x2080 0x20A0 0x20C0 0x20E0 
2 0x4000 0x4020 0x4040 0x4060 0x4080 0x40A0 0x40C0 0x40E0 
3 0x6000 0x6020 0x6040 0x6060 0x6080 0x60A0 0x60C0 0x60E0 
4 0x8000 0x8020 0x8040 0x8060 0x8080 0x80A0 0x80C0 0x80E0 
5 0xA000 0xA020 0xA040 0xA060 0xA080 0xA0A0 0xA0C0 0xA0E0 
6 0xC000 0xC020 0xC040 0xC060 0xC080 0xC0A0 0xC0C0 0xC0E0 
7 0xE000 0xE020 0xE040 0xE060 0xE080 0xE0A0 0xE0C0 0xE0E0 
8 0x0000 0x0020 0x0040 0x0060 0x0080 0x00A0 0x00C0 0x00E0 
9 0x2000 0x2020 0x2040 0x2060 0x2080 0x20A0 0x20C0 0x20E0 
10 0x4000 0x4020 0x4040 0x4060 0x4080 0x40A0 0x40C0 0x40E0 
11 0x6000 0x6020 0x6040 0x6060 0x6080 0x60A0 0x60C0 0x60E0 
12 0x8000 0x8020 0x8040 0x8060 0x8080 0x80A0 0x80C0 0x80E0 
13 0xA000 0xA020 0xA040 0xA060 0xA080 0xA0A0 0xA0C0 0xA0E0 
14 0xC000 0xC020 0xC040 0xC060 0xC080 0xC0A0 0xC0C0 0xC0E0 
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Image Processing Applications 
 
WIMP is designed to exploit the inherent parallelism present in multi-media applications. 
T0 is the system daemon that starts off an application in thread 1. Thread 1 initializes the 
application variables and then starts off thread 2 and thread 3. The three threads work on 
the image simultaneously. The threads synchronize and merge on regular basis, once 
every row of the image in this case.  

Thresholding 
 
This application reads an input image and compares every pixel to a threshold value. If 
the pixel value is greater than the threshold value, the pixel is made white, otherwise, it is 
made black.  The user starts thread one (T1) from WIMPTERM to start the program.  The 
application will print out eight different threshold values as options that can be used in 
comparing the pixels of the image.  The getchar function will get the input to the 
WIMPTERM and will put the selected threshold value into memory.  T1 will now 
initialize Thread 2 (T2) and Thread three (T3).  T1 will send a request to the OS to get a 
block of the pixel, which contains 1024 bytes (32x32 pixels).  Each thread will process 
two pixels at a time by comparing the pixel to the threshold value, and writing the result 
back into memory and VRAM.  If T1 starts at address 0x9100, then T2 starts at 0x9002, 
and T3 starts at 0x9004.  The program counter (PC) will be incremented by six each 
cycle so that the threads run through the image block correctly.  At the end of the block, 
T2 and T3 will wait for T1 to send the processed block back to the computer and to 
VRAM.  Then the image block is updated on the monitor using VGA and WIMPTERM.  
After the data is refreshed, the program will fetch another image block.  This loop will 
continue until the image has been completely processed.  Figure 3.1 below shows this 
process. 
 

   

Threshold 0xAA Threshold 0x88 Threshold 0x66 
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Figure 3.1: Bit Plane Slicing and Thresholding
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Bit Plane Slicing 
 
This application reads an input image 
and ANDS every pixel to a bit slice 
value. If the result is equal to zero, the 
pixel is made white; otherwise, it is 
made black.  The following explains 
the mapping of the algorithm to the 
processor architecture: 
 
 
The user starts thread one (T1) from WIMPTERM to start the program.  The application 
will print out the eight different bit slice values as options that can be used to AND with 
the pixels of the image.  Table 3.1 below shows all of the bit slice values that can be 
chosen.  The getchar function will get the input to the WIMPTERM and will put the 
selected threshold value into memory.  T1 will now initialize Thread 2 (T2) and Thread 
three (T3).  T1 will send a request to the OS to get a block of the pixel, which contains 
1024 bytes (32x32 pixels).  Each thread will process two pixels at a time by comparing 
the pixel to the threshold value, and writing the result back into memory and VRAM.  If 
T1 starts at address 0x9100, then T2 starts at 0x9002, and T3 starts at 0x9004.  The 
program counter (PC) will be incremented by six each cycle so that the threads run 
through the image block correctly.  At the end of the block, T2 and T3 will wait for T1 to 
send the processed block back to the computer and to VRAM.  Then the image block is 
updated on the monitor using VGA and WIMPTERM.  After the data is refreshed, the 
program will fetch another image block.  This loop will continue until the image has been 
completely processed.  Figure 3.1 above shows this process. 
 

  

Bit Slice Bit Slice Value 
Bit slice 0 0000 0001 
Bit slice 1 0000 0010 
Bit slice 2 0000 0100 
Bit slice 3 0000 1000 
Bit slice 4 0001 0000 
Bit slice 5 0010 0000 
Bit slice 6 0100 0000 
Bit slice 7 1000 0000 

Bit Slice 0 Bit Slice 3 Bit Slice 6 
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Edge Detection 
 
The second application is a little more complex than image thresholding that involves 
filtering an image to detect the edges. This simple image filter sweeps a 3x3 kernel across 
the image replacing every pixel with a value that is the weighted sum of the neighboring 
pixels.  
 
The application first pads 0’s around the image to take care of the border cases. The 
illustration depicts the data input to the calculation of a single pixel.  The kernel window 
translates across every pixel of the image and calculates a weighted sum between its 
values and the images’ values which it covers.  The sum is calculated in the following 
manner, given the image ‘P’ and kernel window ‘K’ have indexes relative to the 
window’s center. 
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The new value of the pixel is 
stored in a new location so that it 
does not interfere with the other 
computations where the old value 
of ‘P’ needs to be used.  The 
edge detection program has been 
created in such a way that any 
spatial filter can be applied by 
images.  The current ones 
implemented have the following 
windows: 
 
 

3x3 Kernel Winow

Image
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Time Redundant Fault Tolerant Applications 
 
Time redundant fault tolerant computing is another application domain that fits into the 
multithreading environment. The idea is to run the application that requires high fault 
tolerant standards on different threads and then compare the results. If the results are the 
same, the program execution was successful. On the other hand, if the results don’t 
match, the program execution was not correct. The aim is just to detect the intermittent 
fault and re-execute the program when such a fault is detected.  
 
WIMP supports fault tolerant computing as described in the micro-architectural manual. 
Stores are used as checkpoints in the program that requires fault tolerance. The 
instruction SWFT tracks the stores by writing the store values into a FIFO. The output 
ports 4 and 5 are shorted to input ports 4 and 5 respectively to allow a monitor program to 
track the and compare the stores. In addition, writing into output port 8 interrupts threads 
running the applications whenever required.  
 
A simple scheme that requires the assistance of a compiler is to generate two copies of 
the application program where the store addresses are offset. The program may need to 
be profiled to know store addresses ahead of time. The two copies of the programs are 
executed on different threads completely before the monitor program takes over that 
checks all the stores that have been committed. If the monitor program finds a 
discrepancy, the application program is restarted. This scheme has a very slow response 
time since the programs have to be completed. Since WIMP supports tracking store 
values through the FIFO, this scheme is altered to decrease the response time to detect the 
fault.  
 
In this application domain, we test two implementations of a time redundant fault tolerant 
scheme. The first scheme does not use ft support provided by the SWFT instruction. Only 
the multithreading capabilities of WIMP are used to make the program fault tolerant. In 
this scheme, two copies of the same program are executed with a small delay on two 
different threads. The programs use a modified form of store called “safe store” (a 
software wrapper around a regular store) as check points. The safe store writes the check 
point value into a defined memory location. The program blocks at this store till this 
checkpoint value has been read by the monitor program for comparison. Once the values 
have been read, the program continues regular operation till the next check point has been 
reached. This is a very slow implementation since the safe stores are blocking; and the 
program execution will not proceed until the check points have been read by the monitor 
program. If the values read are not the same, the monitor thread interrupts the program 
threads and restarts them. The general methodology using this scheme is shown in figure 
FT(A). 
 
The second scheme uses the SWFT instruction that tracks the stores by writing the store 
values into the FIFO the same time store is committed. A second copy of the program is 
started with a latency not exceeding the FIFO depth, which is 256 in case of WIMP. The 
two copies write into the different FIFOs while a third thread continuously monitors the 
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FIFO’s and compares the values. If the values popped from the two FIFO’s are not the 
same, the thread interrupts the program threads and restarts them. This scheme executes 
faster since the check point stores are not blocking. Fig FT(B) shows the control flow in 
this implementation scheme. 
 

 
 

Fig. FT(A): Implementing fault tolerance without using SWFT 
 
 
The fault tolerant scheme covers intermittent faults for  

• Data flow 
• Control flow 

 
Data flow check is implemented easily using the schemes mentioned above. The same 
schemes can be used for control flow check by inducing the SWFT instruction at the end 
of every critical branch target. The SWFT should store/write a checksum that is 
computed using the previous control flow checkpoints.  
 
A random number generator is used as a sample program to test the fault tolerant 
schemes in WIMP. A single fault is injected into the program using a global flag that is 
set to start off with. The flag is referred once to change a store value; and then it is 
cleared. The two copies are restarted following fault detection that find the global flag 
cleared. This time, the fault is not injected and the programs complete successfully.  
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Fig FT(B): Implementing fault tolerance using SWFT 

 
Following table shows the execution times of the program: 
 

a) Without the fault tolerance scheme where the program is executed on a single 
thread 

b) With the software fault tolerant scheme that does not use the SWFT support (SW 
Scheme) 

c) With the fault tolerant scheme that uses the SWFT support (HW Scheme) 
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Program Length SW Scheme HW Scheme Original Program 
16 numbers 1124 983 293 

256 Numbers 22724 2687 1805 

 
Execution times of program 

 
The numbers indicate the cycles taken by the program to execute the program. Thus this 
number is the actual time required to execute the program. As we can see, with little 
hardware support in the form of SWFT instruction, the overhead can be reduced to large 
extent. The numbers in the hardware scheme are also little bit larger as they include the 
error injection overhead. It is also evident that, as the program become larger and 
complex the overhead of monitor (comparator) program also becomes relatively less, as 
this overhead is constant and does not depend on length fault tolerant application. 
 
 


